ارزیابی اثرات تغییر کاربری اراضی بر انتشار دی‌اکسیدکربن با استفاده از تحلیل تصاویر ماهواره ای و روش یادگیری عمیق (مطالعه موردی: شهرستان اهواز، ۲۰۱۴-۲۰۲۰)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، ایران

2 گروه مهندسی علوم خاک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، ایران

چکیده

تغییرات کاربری اراضی به عنوان یک چالش مهم در زمینه محیط‌زیست و توسعه پایدار، اثرات قابل توجهی بر چرخه کربن و انتشار گازهای گلخانه‌ای، به ویژه دی‌اکسید کربن، دارد. پایش و تحلیل روند تغییرات کاربری اراضی و پوشش گیاهی، به عنوان شاخصی کلیدی برای ارزیابی وضعیت زیست‌محیطی، از اهمیت ویژه‌ای برخوردار است. این مطالعه با هدف بررسی تأثیر تغییرات کاربری اراضی بر انتشار CO₂ در شهرستان اهواز طی سال‌های 2014 تا 2020 میلادی انجام شده است. در این پژوهش، از تصاویر استخراج شده از Google Earth و روش‌های یادگیری عمیق برای طبقه‌بندی کاربری اراضی استفاده شده است. داده‌های مربوط به انتشار CO₂ از پایگاه داده جیوانی استخراج و تحلیل شد. دقت کلی طبقه‌بندی برای سال‌های 2014 و 2020 به ترتیب 55/97 و 86/98 درصد و ضریب کاپا برای سال‌های 2014 و 2020 به ترتیب 36/94 و 06/96 درصد  به دست آمد. نتایج نشان داد که اراضی کشاورزی (47/77 درصد) و اراضی انسان‌ساخت (89/55 درصد) در دوره مورد مطالعه افزایش چشمگیری داشته‌اند، در حالی که اراضی بایر و علفزار کاهش یافته‌اند. تحلیل غلظت CO₂ نیز حاکی از افزایش 28 درصدی آن در سال 2020 نسبت به سال 2014 است. همبستگی منفی متوسطی بین اراضی بایر و میزان انتشار CO₂ مشاهده شد. از سوی دیگر، اراضی کشاورزی (75/0) و مناطق انسان‌ساخت (43/0) همبستگی مثبتی با میزان انتشار CO₂ نشان دادند که این امر احتمالاً ناشی از افزایش فعالیت‌های انسانی و مصرف انرژی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluating the effects of land use change on CO2 emissions using satellite image analysis and deep learning methods (Case study: Ahvaz county, 2014-2020)

نویسندگان [English]

  • Korosh Andekaeizadeh 1
  • عباس عساکره 1
  • Saeid Hojati 2
1 Department of Biosystems Engineering, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Iran
2 Department of Soil Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz
چکیده [English]

Land use changes, as a major challenge in the field of environment and sustainable development, have significant effects on the carbon cycle and greenhouse gas emissions, especially carbon dioxide. Monitoring and analyzing the trend of land use and vegetation changes, as a key indicator for assessing the environmental status, is of particular importance. This study aimed to investigate the impact of land use changes on CO₂ emissions in Ahvaz city during the years 2014 to 2020. In this research, images extracted from Google Earth and deep learning methods were used for land use classification. Data related to CO₂ emissions were extracted and analyzed from the Giovanni database. The overall classification accuracy for the years 2014 and 2020 was 97.55 and 98.86 percent, respectively, and the kappa coefficient for the years 2014 and 2020 was 94.36 and 96.06 percent, respectively. The results showed that agricultural land (77.47%) and man-made land (55.89%) increased significantly during the study period, while barren and rocky land decreased. Analysis of CO₂ concentration also indicated a 28% increase in 2020 compared to 2014. A moderate negative correlation was observed between barren land and CO₂ concentration. On the other hand, agricultural land (0.75) and man-made areas (0.43) showed a positive correlation with CO₂ concentration, which is likely due to human activities and energy consumption.

کلیدواژه‌ها [English]

  • Agricultural lands
  • CO₂
  • Deep learning method
  • Land use

Introduction

Land use changes are considered one of the serious environmental and sustainable development challenges in the 21st century. These changes result from population growth, urban development, and increasing demand for natural resources, negatively impacting climate and human health. Identifying trends in land use and vegetation changes as indicators of environmental status is one of the key approaches in environmental studies [9]. Undoubtedly, one of the most important consequences of land use changes is its impact on the carbon cycle and greenhouse gas emissions, especially CO₂. This research examines the impact of land use changes on CO2 emissions in Ahvaz County using Google Earth imagery and deep learning algorithms. The main objective of this study is to qualitatively and quantitatively analyze land use changes and their relationship with CO2 emissions. The results of this study can assist in sustainable land management and reducing greenhouse gas emissions, providing tools for policymakers.

Method

This study investigates the impact of land use changes on CO2 emissions in Ahvaz County, the capital of Khuzestan Province, from 2014 to 2020. The general research stages include extracting and preprocessing images from Google Earth, classifying land use using deep learning algorithms, and assessing the accuracy of the algorithms. For analysis, three images from February 2014 and three images from March 2020 were selected. The deep learning method, particularly convolutional neural networks (CNN), was utilized for land use classification. To evaluate the classification accuracy, statistical indices and methods, such as Pearson correlation coefficient, were employed. CO2 data were extracted from NASA’s Giovanni portal, and changes in CO2 concentrations were analyzed in relation to land uses. Pearson correlation coefficient was used to examine the relationship between land use changes and carbon dioxide concentration.

Results

The results indicate that the overall classification accuracy for 2014 was 97.55%, and for 2020, it reached 98.86%. In 2014, barren lands and pebble lands comprised 46.13% and 36.39% of the total area, respectively. These two land types were predominant due to prevailing climatic and geological conditions. Specifically, pebble formations appear in the southwestern and eastern regions, limiting vegetation growth conditions. Additionally, in 2020, barren lands constituted 40% and grassland lands 30.35% of the total area, revealing a significant decrease compared to 2014. In contrast, agricultural lands increased to 21.74%, and human-made lands grew to 6.75%. Agricultural and man-made lands accounted for 12.25 and 4.33 percent of the area of ​​the Ahvaz county in 2014, respectively. Changes in land use particularly affect environmental dynamics and resource utilization. The application of deep learning techniques in this research is introduced as an effective tool for analyzing and planning resource management, sustainable development, and environmental protection. These results can serve as a foundation for future policymaking in land use development and natural resource conservation. In 2014, the average concentration of CO2 was 4.47e-08 ppm, with a standard deviation of 1.41e-09 ppm, while in 2020, these values increased to 6.34e-06 ppm and 1.74e-09 ppm, respectively. The increase in the maximum CO2 concentration was more pronounced than the average, reaching 80.53%, particularly around industrial centers and the metropolitan area of Ahvaz. The correlation between land use and CO₂ concentration indicates differing impacts of land use types; barren lands exhibit a moderate negative correlation, suggesting that CO₂ increases with the reduction of these areas. Agricultural lands demonstrated a strong positive correlation with a coefficient of 0.75 regarding the concentration of carbon dioxide.

Conclusions

The results of this study demonstrate that the deep learning method is effective in classifying agricultural lands based on Google Earth images, with classification accuracy around 98 percent. From 2014 to 2020, barren and pebble lands decreased by 14.75%, while agricultural and human-made lands increased by 77.47% and 55.89%, respectively. Pearson correlation analysis indicates a moderate negative correlation for barren lands and a strong positive correlation for agricultural lands concerning CO2 emissions. This study also notes that from 2014 to 2020, the concentration of CO2 increased by 28.34%, reflecting heightened industrial and agricultural activities and changes in emissions sources. This trend may be due to population growth, economic development, and changes in environmental policies. Overall, the conversion of barren and pebble lands into agricultural and human-made areas has led to an increase in CO₂ concentrations.

 

Author Contributions

Conceptualization, K. Andekaeizadeh., A. Asakereh and S. Hohati.; methodology, K. Andekaeizadeh. and A. Asakereh; software, K.A. and S.H; validation, K. Andekaeizadeh., A. Asakereh and S. Hojati.; formal analysis, K.Andekaeizadeh and A. Asakereh.; investigation, K. Andekaeizadeh.; resources, K. Andekaeizadeh. and A. Asakereh; data curation, A. Asakereh.; writing—original draft preparation, K. Andekaeizadeh; writing—review and editing, A. Asakereh and S.Hojati; visualization, K. Andekaeizadeh.; supervision, A. Asakereh.; project administration, A. Asakereh.; funding acquisition, A. Asakereh. All authors have read and agreed to the published version of the manuscript. All authors contributed equally to the conceptualization of the article and writing of the original and subsequent drafts.

Data Availability Statement

All data generated or analyzed during this study are available from the corresponding author on request

Acknowledgements

The authors express their gratitude to the Vice Chancellor for Research and Technology of Shahid Chamran University of Ahvaz, Iran, for providing financial support through the research grant (No. SCU.AA98.29747).

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The author declares no conflict of interest.

Abiyat, M., Abiyat, M., & Abiyat, M. (2021). Modeling the Process of Spatio-Temporal Changes in Land-Use and Urban Development of Ahvaz Based on Spatial Planning Approach. Town and Country Planning13(1), 215-245. (in Persian).
Acker, J., Soebiyanto, R., Kiang, R., & Kempler, S. (2014). Use of the NASA Giovanni data system for geospatial public health research: example of weather-influenza connection. ISPRS International Journal of Geo-Information3(4), 1372-1386. https://doi.org/10.3390/ijgi3041372.
Ahmad, M. N., Shao, Z., & Javed, A. (2023). Modelling land use/land cover (LULC) change dynamics, future prospects, and its environmental impacts based on geospatial data models and remote sensing data. Environmental Science and Pollution Research30(12), 32985-33001.
Ahmad, S., Kaur, N., Badar, M.S., Shakeel, A., & Ahmed, F. (2024). Modeling Land Use and Land Cover Changes and Its Atmospheric Pollutant Concentration in the Coal Mining Area of Ramgarh District of Jharkhand, India, Using Multi‐Layer Perceptron Neural Networks (MLPNN). Environmental Quality Management34(2), 22351.
Alfiky, A., Kaule, G., & Salheen, M. (2012). Agricultural fragmentation of the Nile Delta; a modeling approach to measuring agricultural land deterioration in Egyptian Nile Delta. Procedia Environmental Sciences14, 79-97. https://doi.org/10.1016/j.proenv.2012.03.009.
Anonymous. (2000). Energy Balance of Iran. Iran Ministry of Energy, Deputy of Electricity and Energy Affairs. (in Persian).
Anonymous. (2020). Energy Balance of Iran. Iran Ministry of Energy, Deputy of Electricity and Energy Affairs. (in Persian).
Basheer, S., Wang, X., Farooque, A.A., Nawaz, R.A., Pang, T., & Neokye, E.O. (2024). A review of greenhouse gas emissions from agricultural soil. Sustainability, 16(11), 4789.
Bhosle, K., & Musande, V. (2019). Evaluation of deep learning CNN model for land use land cover classification and crop identification using hyperspectral remote sensing images. Journal of the Indian Society of Remote Sensing47(11), 1949-1958.
Carranza-García, M., García-Gutiérrez, J., & Riquelme, J.C. (2019). A framework for evaluating land use and land cover classification using convolutional neural networks. Remote Sensing11(3), 274.
Chen, D., Lu, X., Hu, W., Zhang, Ch., & Lin, Y. (2021). How urban sprawl influences eco environmental quality: Empirical research in China by using the Spatial Durbin model. Ecological Indicators131, 108113.
Chen, Y., Jiang, H., Li, C., Jia, X., & Ghamisi, P. (2016). Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE transactions on geoscience and remote sensing54(10), 6232-6251.
Da silva Cruz, J., Cavalcante Blanco, C., de Oliveira Júnior, J. (2022). Modeling of land use and land cover change dynamics for future projection of the Amazon number curve. Science of The Total Environment, 811, 152348.
Dyer, J.A., Kulshreshtha, S.N., McConkey, B.G., & Desjardins, R.L. (2010). An assessment of fossil fuel energy use and CO2 emissions from farm field operations using a regional level crop and land use database for Canada. Energy35(5), 2261-2269.
El-Kawy, O. R., Rød, J. K., Ismail, H. A., & Suliman, A. S. (2011). Land use and land cover change detection in the western Nile delta of Egypt using remote sensing data. Applied geography31(2), 483-494.
Falahatkar, S., & Hosseini, M, S. (2017). Predicting CO2 emission hotspots due to land use change. Journal of Natural Environment, 70 (1), 139-148. (in Persian).
Fatemi, S.B, & Rezaei, Y. (2017). Principles of Remote Sensing. Azadeh Publications, Tehran (in Persian)
Fischedick, M., Roy, J., Acquaye, A., Allwood, J., Ceron, J. P., Geng, Y., ... & Tanaka, K. (2014). Industry In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Technical Report.
Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., ... & Snyder, P. K. (2005). Global consequences of land use. science309(5734), 570-574.
Grecchi, R. C., Gwyn, Q. H. J., Bénié, G. B., Formaggio, A. R., & Fahl, F. C. (2014). Land use and land cover changes in the Brazilian Cerrado: A multidisciplinary approach to assess the impacts of agricultural expansion. Applied Geography55, 300-312.
Hoque, M. Z., Islam, I., Ahmed, M., Hasan, S. S., & Prodhan, F. A. (2022). Spatio-temporal changes of land use land cover and ecosystem service values in coastal Bangladesh. The Egyptian Journal of Remote Sensing and Space Science25(1), 173-180. https://doi.org/10.1016/j.ejrs.2022.01.008.
Houghton, R. A. (2003). Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus B: Chemical and Physical Meteorology55(2), 378-390. https://doi.org/10.3402/tellusb.v55i2.16764.
Jiang, H., Hu, H., Zhong, R., Xu, J., Xu, J., Huang, J., ... & Lin, T. (2020). A deep learning approach to conflating heterogeneous geospatial data for corn yield estimation: A case study of the US Corn Belt at the county level. Global change biology26(3), 1754-1766. https://doi.org/10.1111/gcb.14885.
Khachoo, Y.H., Cutugno, M., Robustelli, U., Pugliano, G. (2024). Impact of land use and land cover (LULC) changes on carbon stocks and economic implications in Calabria using Google Earth Engine (GEE). Sensors24(17), 5836.
Li, Y., Zhang, H., & Shen, Q. (2017). Spectral–spatial classification of hyperspectral imagery with 3D convolutional neural network. Remote Sensing, 9(1), 67.
Lillesand, T., Kiefer, R. W., & Chipman, J. (2015). Remote sensing and image interpretation. John Wiley & Sons.
Magazzino, C., Cerulli, G., Shahzad, U., & Khan, S. (2023). The nexus between agricultural land use, urbanization, and greenhouse gas emissions: Novel implications from different stages of income levels. Atmospheric Pollution Research14(9), 101846.
Mousavi, S. M., Ebadi, H., & Kiani, A. (2019). Provide an Optimal Deep-network Method for Spectral-spatial Classifying of High Resolution Images. Journal of Geomatics Science and Technology9(2), 151-170. (in Persian).
Murugan, M., Selvaraj, R., & Nagarajan, S. (2022). Assessment of land use land cover change detection in multitemporal satellite images using machine learning algorithms. In Cognitive Systems and Signal Processing in Image Processing (pp. 27-45). Academic Press.
Ramankutty, N., & Foley, J. A. (1999). Estimating historical changes in global land cover: Croplands from 1700 to 1992. Global biogeochemical cycles13(4), 997-1027.
Ranjbar, A., Heydarnejad, S., Mousavi, S. H., & Mirzaei, R. (2019). Mapping desertification potential using life cycle assessment method: a case study in Lorestan Province, Iran. Journal of Arid Land11, 652-663. https://doi.org/10.1007/s40333-019-0064-z.
Rehman, A., Ma, H., Ozturk, I., Murshed, M., & Dagar, V. (2021). The dynamic impacts of CO2 emissions from different sources on Pakistan’s economic progress: a roadmap to sustainable development. Environment, Development and Sustainability23(12), 17857-17880.
Salem, M., Tsurusaki, N., & Divigalpitiya, P. (2020). Remote sensing-based detection of agricultural land losses around Greater Cairo since the Egyptian revolution of 2011. Land use policy97, 104744. https://doi.org/10.1016/j.landusepol.2020.104744.
Seto, K. C., Güneralp, B., & Hutyra, L. R. (2012). Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences109(40), 16083-16088. https://doi.org/10.1073/pnas.1211658109.
Shojaeeian, A., Mokhtari Chelche, S., Keshtkar, L., & Soleymani Rad, E. (2015). Comparing the Performance of Parametric and NonparametricMethods in Land Cover Classification using Landsat-8 Satellite Images (Case study: A part of Dezful city). Scientific-Research Quarterly of Geographical Data (SEPEHR)24(93), 53-64. (in Persian).
Taheri Dehkordi, A., & Valadan Zoej, M. J. (2021). Classification of croplands using sentinel-2 satellite images and a novel deep 3D convolutional neural network (case study: Shahrekord). Iranian Journal of Soil and Water Research52(7), 1941-1953. (in Persian).
Tahmasebi Moghadam, H., Ghaed Rahmati, S., & Shahrokhi far, Z. (2020). Comparative evaluation of urban sprawl with emphasis on land use changes during the period of 1987-2016 (case study: Amel and Babol cities). Journal of geography and urban-regional planning, 27, 149-166. (in Persian).
Tejaswini, M., Pranuthi.P., Ravichand, S., & Anuradha. T. (2019). Land cover change detection using convolution neural network. In 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA) (pp. 791-794). IEEE.
United Nations. (2018). World Urbanization Prospects 2018: Highlights. United Nations Department of Economic and Social Affairs, Population Division.
Wang, J., Bretz, M., Dewan, M. A. A., & Delavar, M. A. (2022). Machine learning in modelling land-use and land cover-change (LULCC): Current status, challenges and prospects. Science of the Total Environment822, 153559. https://doi.org/10.1016/j.scitotenv.2022.153559.
Wang, Z.B., Chen, J., Mao, S.C., Han, Y.C., Chen, F., Zhang, L.F., Li, Y.B., & Li, C.D. (2017). Comparison of greenhouse gas emissions of chemical fertilizer types in China's crop production. Journal of Cleaner Production141,1267-1274.
Yang, C., Rottensteiner, F., & Heipke, C. (2018). Classification of land cover and land use based on convolutional neural networks. ISPRS annals of the photogrammetry, remote sensing and spatial information sciences4, 251-258.