بررسی تأثیر مواد هیومیکی استخراجی از لئوناردیت بر سینتیک واجذب و شکل‌های شیمیایی نیکل در یک خاک آهکی آلوده به نیکل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و مهندسی باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه ازاد اسلامی واحد کرج، کرج، ایران

2 گروه خاکشناسی، دانشکده کشاورزی و منابع طبیعی، دانشگاه ازاد اسلامی واحد کرج، کرج، ایران.

3 پژوهشکده فناوری تولیدات گیاهی، دانشگاه شهید باهنر کرمان، ایران

4 گروه زراعت و اصلاح نباتات، دانشکده کشاورزی و منابع طبیعی، دانشگاه ازاد اسلامی واحد کرج، کرج، ایران

5 گروه محیط زیست، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران

چکیده

مطالعه حاضر به بررسی تأثیر اجزای مختلف مواد هیومیکی، شامل هیومیک اسید، فولویک اسید و ترکیب آن‌ها، بر رفتار نیکل در یک خاک آهکی می‌پردازد. در این پژوهش، مواد هیومیکی از لئوناردیت استان کرمان استخراج و به‌صورت جداگانه به خاک آلوده به نیکل (با غلظت 120 میلی‌گرم بر کیلوگرم) افزوده شد. پس از گذشت سه ماه نگهداری در شرایط رطوبتی، سینتیک واجذب نیکل با استفاده از عصاره‌گیر EDTA و اشکال شیمیایی نیکل با روش عصاره‌گیری دنباله‌ای مورد ارزیابی قرار گرفت. نتایج نشان داد که کاربرد هیومیک اسید منجر به افزایش ۵۲ درصدی واجذب نیکل شد. در مقایسه، کاربرد ترکیب هیومیک اسید–فولویک اسید و فولویک اسید به‌تنهایی به ترتیب موجب کاهش ۱۳ و ۳۵ درصدی واجذب نیکل نسبت به نمونه شاهد گردید. مدل دو مرحله‌ای مرتبه اول به‌خوبی بر داده‌های سینتیک واجذب نیکل برازش یافت، که بیانگر توانایی آن در توصیف فرآیند واجذب نیکل در خاک‌های تیمار شده بود. علاوه بر این، بررسی تأثیر مواد هیومیکی بر اشکال شیمیایی نیکل نشان داد که کاربرد هیومیک اسید و ترکیب هیومیک اسید–فولویک اسید، به‌طور معنی‌داری (در سطح یک درصد)، موجب افزایش اشکال تبادلی و کربناتی نیکل گردید. در حالی‌ که استفاده از فولویک اسید به کاهش معنی‌دار این اشکال متحرک در مقایسه با نمونه شاهد منجر شد. به‌طور کلی، یافته‌ها حاکی از پتانسیل بالای مواد هیومیکی در تغییر قابلیت دسترسی نیکل در خاک‌های آهکی و تأثیر متغیر نوع ماده هیومیکی بر رفتار این عنصر سنگین در محیط خاک است؛ مساله‌ای که می‌تواند در توسعه روش‌های پایدار مدیریت آلودگی فلزات سنگین، از جمله تثبیت شیمیایی یا فرآیند گیاه‌پالایی، مورد بهره‌برداری قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of the effects of leonardite-derived humic substances on nickel desorption kinetics and chemical forms in a calcareous nickel-contaminated soil

نویسندگان [English]

  • Iman Seifollahi 1
  • Ali Khanmirzaei 2
  • Vahid Reza Saffari 3
  • Peyman Foroozesh 4
  • Mahboub Saffari 5
1 Department of Horticultural Sciences, College of Agriculture and Natural Resources, Karaj Branch, Islamic Azad University, Karaj, Iran
2 Department of Soil Science, Karaj branch, Islamic Azad University, Karaj, Iran
3 Research and Technology Institute of Plant Production, Shahid Bahonar University, Kerman, Iran
4 Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, Karaj Branch, Islamic Azad University, Karaj, Iran
5 Department of Environment, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
چکیده [English]

The present study investigates the effects of different humic substances—including humic acid, fulvic acid, and their combination—on the behavior of nickel (Ni) in a calcareous soil. In this research, humic substances were extracted from leonardite obtained from Kerman Province and separately applied to soil contaminated with Ni (at a concentration of 120 mg/kg). After a three-month incubation period under moist conditions, Ni desorption kinetics were assessed using EDTA extraction, and the chemical forms of Ni were evaluated through a sequential extraction method. The results showed that the application of humic acid led to a 52% increase in Ni desorption. In comparison, the application of the humic acid–fulvic acid combination and fulvic acid alone resulted in 13% and 35% decreases in Ni desorption, respectively, compared to the control. The two first-order kinetic model fit the Ni desorption data well, indicating its capability to describe the desorption process in the treated soils. Furthermore, the impact of humic substances on the chemical forms of Ni revealed that humic acid and the humic acid–fulvic acid combination significantly (at the 1% level) increased the exchangeable and carbonate-bound fractions of Ni. In contrast, fulvic acid significantly reduced these mobile forms compared to the control. Overall, the findings demonstrate the high potential of humic substances in altering the bioavailability of Ni in calcareous soils and highlight the influence of humic substance type on the behavior of this heavy metal in the soil environment. These results suggest the applicability of humic substances in developing sustainable strategies for managing heavy metal pollution, such as chemical immobilization or phytoremediation processes. 

کلیدواژه‌ها [English]

  • Humic and fulvic acids
  • Chemical stabilization
  • Sequential extraction
  • Metal release kinetics
  • Heavy metals

EXTENDED ABSTRACT

Introduction: 

Heavy metals contamination, particularly from elements like nickel (Ni), poses significant risks to soil health and agricultural productivity. Ni is known for its toxic effects on plant growth and soil microbiota, leading to reduced crop yields and ecosystem degradation. Humic substances, such as humic acid and fulvic acid, have gained attention for their potential to improve soil conditions and mitigate the adverse effects of heavy metals. These natural organic compounds can enhance nutrient availability, promote soil structure, and interact with metal ions, influencing their mobility and bioavailability. Despite the promising characteristics of humic substances, the specific impacts of different types on Ni behavior in calcareous soils remain insufficiently explored. Therefore, this study aimed to investigate the effects of various humic substances, including humic acid, fulvic acid, and their combined form, on Ni behavior in a calcareous soil.

Materials and Methods: 

Humic substances were extracted from leonardite sourced from Kerman province, Iran. The extracted humic acid (HA), fulvic acid (FA), and their combination (HAFA) were then applied to Ni-contaminated soil at a concentration of 120 mg/kg. The contaminated soil was maintained under moisture conditions for 3 months to simulate field conditions. The kinetics of Ni desorption were assessed using EDTA as an extractor, and the chemical forms of Ni were evaluated through a sequential extraction procedure. For desorption kinetic process, 5 g samples of the treated soil were placed in centrifuge tubes and mixed with 25 mL of 0.01 M EDTA solution at pH 7 for various time intervals (30, 60, 120, 240, 480, 960, 1920, 3840, and 7680 minutes). After each interval, the samples were centrifuged, and the supernatant was analyzed for Ni concentration using atomic absorption spectroscopy. The effectiveness of the humic substances on the chemical forms of Ni was determined through a series of extraction steps aimed at isolating exchangeable, carbonate-bound, organically-bound, Mn-Oxid-bound, Fe-Oxid-bound and residual forms of Ni. The mobility coefficient of Ni was calculated as a ratio of the sum of exchangeable and carbonate-bound forms to the total Ni content.

Results: 

The results indicated that the application of humic acid significantly enhanced Ni desorption, resulting in a 52.13% increase in Ni release. Conversely, the use of fulvic acid and the combination of humic and fulvic acids led to reductions of 13.91% and 35.25% in Ni desorption, respectively, compared to the control samples. The data were well-fitted to a two first-order reaction model, which highlighted the capacity of this model to accurately describe the Ni desorption process in the treated soils. Furthermore, the effectiveness of humic substances on the chemical forms of Ni demonstrated that humic acid and the humic-fulvic acid combination significantly increased both exchangeable and carbonate-bound forms of Ni by 37% and 25%, respectively, compared to the control treatment. In contrast, fulvic acid application resulted in an 18% decrease in these mobile forms.

Conclusion: 

The present study demonstrates that the use of various humic substance components can significantly influence Ni behavior in soil. Humic acid application enhanced Ni availability. Conversely, fulvic acid reduced nickel availability by decreasing both desorption and mobility factor of Zn. The combination of fulvic acid and humic acid also exhibited a substantial reduction in Ni accessibility, albeit with a slight increase in its mobility factor as revealed by chemical form analysis. These findings suggest that humic acid is a beneficial amendment for studies aimed at increasing the bioavailability of nutrients and heavy metals for applications such as phytoremediation or improving soil fertility. On the other hand, the use of fulvic acid could serve as a chemical stabilizer for nickel in the soil, which may be advantageous in preventing the potential toxicity of this heavy metal. However, further field studies are required to validate these results and explore the practical implications of using humic and fulvic acids in soil management practices.

Author Contributions

Iman Seifollahi: conceptualization, methodology, formal analysis, software, data curation, investigation, writing—original draft preparation, and overall project administration; he also assisted in the data analysis and guided the modeling process. Ali Khanmirzaei: contributed to supervision, validation, and writing—review and editing; also supported the completion of numerical modeling and data analysis. Vahid Reza Saffari: contributed to data collection, validation, and writing—review and editing; also involved in numerical analysis. Peyman Foroozesh: provided expertise in data validation and analysis, and contributed to writing—review and editing. Mahboub Saffari: supported supervision, assisted in the final revisions, and helped complete the numerical modeling.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgements

This work was partially derived from the Ph.D. thesis of the first author. The authors would like to acknowledge the support of the Department of Horticultural Sciences, College of Agriculture and Natural Resources, Karaj Branch, Islamic Azad University, Karaj, Iran.

Ethical Considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of Interest

The authors declare no conflict of interest.

Ali, S., Sami, U., Hasnain, U., Arsalan, S., Sohaib, N., Zarmina, A., ... & Rimsha, Z. (2022). Effects of Heavy Metals on Soil Properties and Their Biological Remediation. Indian J. Pure Appl. Biosci10, 40-46.
Aranganathan, L., Rajasree, S. R., Suman, T. Y., Remya, R. R., Gayathri, S., Jayaseelan, C., ... & Gobalakrishnan, M. (2019). Comparison of molecular characteristics of Type A humic acids derived from fish waste and sugarcane bagasse co-compost influenced by various alkaline extraction protocols. Microchemical Journal, 149, 104038.
Bahemmat, M., Farahbakhsh, M., & Kianirad, M. (2016). Humic substances-enhanced electroremediation of heavy metals contaminated soil. Journal of hazardous materials312, 307-318.
Bolan, N., Srivastava, P., Rao, C. S., Satyanaraya, P. V., Anderson, G. C., Bolan, S., ... & Kirkham, M. B. (2023). Distribution, characteristics and management of calcareous soils. Advances in agronomy182, 81-130.
Boostani, H. R., Hardie, A. G., & Najafi-Ghiri, M. (2020). Chemical fractions and bioavailability of nickel in a Ni-treated calcareous soil amended with plant residue biochars. Archives of Agronomy and Soil Science66(6), 730-742.
Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils 1. Agronomy journal, 54(5), 464-465.
Bremner, J. M., & Mulvaney, C. S. (1982). Nitrogen-Total Pp. 595-623. Methods of Soil Analysis, American Society of Agronomy, Madison, Wisconsin, USA.
Brunori, C., Cremisini, C., D’annibale, L., Massanisso, P., & Pinto, V. (2005). A kinetic study of trace element leachability from abandoned-mine-polluted soil treated with SS-MSW compost and red mud. Comparison with results from sequential extraction. Analytical and Bioanalytical Chemistry381(7), 1347-1354.
Dang, Y. P., Dalal, R. C., Edwards, D. G., & Tiller, K. G. (1994). Kinetics of zinc desorption from Vertisols. Soil Science Society of America Journal58(5), 1392-1399.
Dotaniya, M. L., & Meena, V. D. (2015). Rhizosphere effect on nutrient availability in soil and its uptake by plants: a review. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences85, 1-12.
El-Naggar, A., Ahmed, N., Mosa, A., Niazi, N. K., Yousaf, B., Sharma, A., ... & Chang, S. X. (2021). Nickel in soil and water: Sources, biogeochemistry, and remediation using biochar. Journal of hazardous materials419, 126421.
Farraji, H., Robinson, B., Mohajeri, P., & Abedi, T. (2020). Phytoremediation: Green technology for improving aquatic and terrestrial environments. Nippon. J. Environ. Sci1, 1-30.
Garcia-Mina, J. M. (2006). Stability, solubility and maximum metal binding capacity in metal–humic complexes involving humic substances extracted from peat and organic compost. Organic Geochemistry37(12), 1960-1972.
Genchi, G., Carocci, A., Lauria, G., Sinicropi, M. S., & Catalano, A. (2020). Nickel: Human health and environmental toxicology. International journal of environmental research and public health17(3), 679.
Gondar, D., López, R., Fiol, S., Antelo, J. M., & Arce, F. (2006). Cadmium, lead, and copper binding to humic acid and fulvic acid extracted from an ombrotrophic peat bog. Geoderma135, 196-203.
Kabata-Pendias, A. (2000). Trace elements in soils and plants. CRC press.
Kaur, R., Sharma, S., & Kaur, H. (2019). Heavy metals toxicity and the environment. Journal of Pharmacognosy and Phytochemistry, 1, 247-249.
Khosravi, S., Nezami, S., & Fatemi, A. (2023). Comparison of structural diversity of humic acid types extracted from conventional organic sources in agriculture. Iranian Journal of Soil and Water Research54(1), 123-134.
Krachler, R., Krachler, R. F., Wallner, G., Hann, S., Laux, M., Recalde, M. F. C., ... & Keppler, B. K. (2015). River-derived humic substances as iron chelators in seawater. Marine chemistry, 174, 85-93.
Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil science society of America journal, 42(3), 421-428.
Loeppert, R. H., & Suarez, D. L. (1996). Carbonate and gypsum. Methods of soil analysis. Part, 3, 437-474.
Moradkhani, P., Oustan, S., Reyhanitabar, A., & Alidokht, L. (2021). Efficiency of humic acid from various organic sources for reducing hexavalent chromium in aqueous solutions. Pollution7(2), 321-331.
Murphy, J. A. M. E. S., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica chimica acta27, 31-36.
Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 3 Chemical methods5, 961-1010.
Pishchik, V., Mirskaya, G., Chizhevskaya, E., Chebotar, V., & Chakrabarty, D. (2021). Nickel stress-tolerance in plant-bacterial associations. PeerJ9, e12230.
Pratt, P. F. (1965). Potassium. Edit Black, CA Method of Soil Analysis Part-2. Amer. Soc. of Agron. Inc. Pub. Madison, Wisconsin, USA.
Pratush, A., Kumar, A., & Hu, Z. (2018). Adverse effect of heavy metals (As, Pb, Hg, and Cr) on health and their bioremediation strategies: a review. International Microbiology21, 97-106.
Rong, Q., Zhong, K., Huang, H., Li, C., Zhang, C., & Nong, X. (2020). Humic acid reduces the available cadmium, copper, lead, and zinc in soil and their uptake by tobacco. Applied Sciences10(3), 1077.
Saffari, M., & Moazallahi, M. (2023). Nickel behavior as affected by various physical-chemical modified biochars of cypress cones in a calcareous nickel-spiked soil. Archives of Agronomy and Soil Science69(6), 981-998.
Saffari, M., Karimian, N., Ronaghi, A., Yasrebi, J., & Ghasemi-Fasaei, R. (2015). Stabilization of nickel in a contaminated calcareous soil amended with low-cost amendments. Journal of soil science and plant nutrition15(4), 896-913.
Saffari, V. R., & Saffari, M. (2020). Effects of EDTA, citric acid, and tartaric acid application on growth, phytoremediation potential, and antioxidant response of Calendula officinalis L. in a cadmium-spiked calcareous soil. International journal of phytoremediation22(11), 1204-1214.
Saffari, V. R., & Saffari, M. (2021). Improving Phytoremediation Efficiency of Copper-spiked Calcareous Soils by Humic Acid Applications. Pollution7(4), 871-884.
Senesi, N., & Loffredo, E. (2005). Metal ion complexation by soil humic substances. Chemical processes in soils8, 563-617.
Singh, J. P., Karwasra, S. P. S., & Singh, M. (1988). Distribution and forms of copper, iron, manganese, and zinc in calcareous soils of India. Soil Science146(5), 359-366.
Song, C., Sun, S., Wang, J., Gao, Y., Yu, G., Li, Y., ... & Zhou, L. (2023). Applying fulvic acid for sediment metals remediation: Mechanism, factors, and prospect. Frontiers in Microbiology13, 1084097.
Sparks, D. L., Page, A. L., Helmke, P. A., & Loeppert, R. H. (Eds.). (2020). Methods of soil analysis, part 3: Chemical methods (Vol. 14). John Wiley & Sons.
Sposito, G., Lund, L. J., & Chang, A. C. (1982). Trace metal chemistry in arid‐zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd, and Pb in solid phases. Soil Science Society of America Journal, 46(2), 260-264.
Sreekanth, T. V. M., Nagajyothi, P. C., Lee, K. D., & Prasad, T. N. V. K. V. (2013). Occurrence, physiological responses and toxicity of nickel in plants. International Journal of Environmental Science and Technology10, 1129-1140.
Sumner, M. E., & Miller, W. P. (1996). Cation exchange capacity and exchange coefficients. Methods of soil analysis: Part 3 Chemical methods5, 1201-1229.
Swift, R. S. (1996). Organic matter characterization. In: Sparks DL (ed) Methods of soil analysis. Part 3. Chemical methods. Soil Science Society of America, American Society of Agronomy, Madison, pp 1018–1020.
Tan, K. H. (2003). Humic matter in soil and the environment: principles and controversies. CRC press.
Vargas, C., Pérez-Esteban, J., Escolástico, C., Masaguer, A., & Moliner, A. (2016). Phytoremediation of Cu and Zn by vetiver grass in mine soils amended with humic acids. Environmental Science and Pollution Research23, 13521-13530.
Wang, M., Song, G., Zheng, Z., Song, Z., Mi, X., Hua, J., & Wang, Z. (2024). Effect of humic substances on the fraction of heavy metal and microbial response. Scientific Reports14(1), 11206.
Wang, P., Ding, Y., Liang, Y., Liu, M., Lin, X., Ye, Q., & Shi, Z. (2021). Linking molecular composition to proton and copper binding ability of fulvic acid: a theoretical modeling approach based on FT-ICR-MS analysis. Geochimica et Cosmochimica Acta312, 279-298.
Xiong, J., Koopal, L. K., Tan, W., Fang, L., Wang, M., Zhao, W., ... & Weng, L. (2013). Lead binding to soil fulvic and humic acids: NICA-Donnan modeling and XAFS spectroscopy. Environmental science & technology47(20), 11634-11642.
Yildirim, E., Ekinci, M., Turan, M., Ağar, G., Dursun, A., Kul, R., ... & Argin, S. (2021). Humic+ Fulvic acid mitigated Cd adverse effects on plant growth, physiology and biochemical properties of garden cress. Scientific reports11(1), 8040.
Yu, G. F., Jiang, X., He, W. X., & He, Z. G. (2002). Effect of humic acids on species and activity of cadmium and lead in red soil. Acta Scientiae Circumstantiae22(4), 508-513.
Yusuf, M., Fariduddin, Q., Hayat, S., & Ahmad, A. (2011). Nickel: an overview of uptake, essentiality and toxicity in plants. Bulletin of environmental contamination and toxicology86, 1-17.
Zhang, Y., Liu, G., Gao, S., Zhang, Z., & Huang, L. (2023). Effect of humic acid on phytoremediation of heavy metal contaminated sediment. Journal of Hazardous Materials Advances9, 100235.
Zhong, X., Zhou, S., Huang, M., & Zhao, Q. (2009). Distribution characteristics of heavy metal forms in soil and their influencing factors. Ecol. Environ. Sci.18, 1266-1273.