ارزیابی پتانسیل کیتوزان و نانو کیتوزان بر بهبود رشد و عملکرد گیاه همیشه بهار (Calendula Officinalis L.) در شرایط تنش شوری

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه لرستان، خرم آباد، ایران

چکیده

شوری یکی از مهمترین تنش‌هایی است که عملکرد اکثر گیاهان را در سراسر جهان کاهش می‌دهد. گیاهان از مکانیزم‌های مختلفی در پاسخ به تنش‌های زیست محیطی استفاده می‌کنند. کیتوزان یک بیوپلیمر طبیعی که به‌عنوان یک محرک زیستی و ترکیب غیر سمی و سازگار با محیط زیست، تحریک‌کننده می‌باشد که به‌طور گسترده‌ای در پاسخ به تنش‌های زیستی و غیر‌زیستی مؤثر است. به‌منظور بررسی اثر کیتوزان و نانو کیتوزان بر خصوصیات مورفوفیزولوژیکی گیاه همیشه بهار تحت تنش شوری، آزمایشی در شرایط گلخانه انجام شد. تیمارها شامل چهار سطح شوری (0، 50، 100 و 150 میلی‌مولار از منبع کلرید سدیم) و پنج سطح تعدیل‌کننده (0، 25/0، 5/0 گرم در لیتر کیتوزان و 25/0 و 5/0 گرم در لیتر نانو کیتوزان) به‌صورت فاکتوریل و در قالب طرح کاملا تصادفی با سه تکرار انجام شد. نتایج نشان داد که بیشترین وزن تر و خشک کل بوته و وزن تر ‌و خشک گل، تعداد گل، تعداد برگ و ارتفاع گیاه در تیمار محلول‌پاشی 5/0 گرم در لیتر نانو کیتوزان تحت شرایط بدون تنش مشاهده شد. کمترین میزان این صفات در تیمار تنش 150 میلی‌مولار نمک کلرید سدیم و عدم کاربرد تعدیل‎کننده وجود داشت. اعمال تنش 150 میلی‌مولار نمک کلرید سدیم، محتوی نسبی آب برگ را در مقایسه با تیمار شاهد به میزان 6/12 درصد کاهش داد. محلول‌پاشی تعدیل‎کننده‎ها سبب افزایش معنی‌دار محتوی نسبی آب برگ نسبت به تیمار شاهد شد. تنش شوری، نشت یونی را افزایش داد. ولی محلول‌پاشی تعدیل‌کننده‌ها موجب کاهش نشت یونی شد. همچنین، بیشترین میزان رنگیزه‌های فتوسنتزی در تیمار محلول‌پاشی 5/0 گرم در لیتر نانو کیتوزان تحت شرایط بدون تنش و کمترین میزان این صفات در تیمار شاهد مشاهده شد. نتایج مقایسه میانگین نشان داد که بیشترین مقدار پرولین مربوط به تیمار 150 میلی‌مولار نمک و محلول‌پاشی 5/0 گرم در لیتر نانو کیتوزان به میزان 44/3 میکرومول بر گرم وزن تر بود. کمترین غلظت پرولین در تیمار شاهد به میزان 64/1 میکرومول بر گرم وزن تر مشاهده شد. با توجه به نتایج بدست آمده به نظر می‎رسد محلول‌پاشی نانو کیتوزان می‌تواند به‌عنوان تعدیل‎کننده مناسب برای افزایش عملکرد گیاه همیشه‌بهار در شرایط تنش شوری معرفی شود. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of the potential of chitosan and nanochitosan on improving the growth and yield of marigold (Calendula officinalis L.) under salt stress conditions

نویسندگان [English]

  • zohreh bolhassani
  • Mohammad Feizian
Department of Soil Science and Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
چکیده [English]

Salinity is one of the most significant stresses that reduce the performance of most plants worldwide. Plants utilize various mechanisms in response to environmental stresses. Chitosan, a natural biopolymer, acts as a biostimulant and a non-toxic, environmentally friendly compound, widely effective in response to biotic and abiotic stresses. To investigate the effect of chitosan and nano-chitosan on the morphophysiological characteristics of Calendula officinalis L. under salinity stress, a greenhouse experiment was conducted. Treatments included four salinity levels (0, 50, 100, and 150 mM from sodium chloride source) and five modifier levels (0, 0.25, 0.5 g/L chitosan and 0.25 and 0.5 g/L nano-chitosan) in a factorial arrangement based on a completely randomized design with three replications. The results showed that the highest fresh and dry weight of the whole plant and flower, number of flowers, number of leaves, and plant height were observed in the 0.5 g/L nano-chitosan foliar application treatment under non-stress conditions. The lowest levels of these traits were observed in the 150 mM sodium chloride stress treatment without modifier application. application of 150 mM sodium chloride stress reduced the relative water content of leaves by 12.6% compared to the control. Foliar application of modifiers significantly increased the relative water content of leaves compared to the control. Salinity stress increased ion leakage, but foliar application of modifiers reduced ion leakage. Also, the highest amount of photosynthetic pigments was observed in the 0.5 g/L nano-chitosan foliar application treatment under non-stress conditions, and the lowest amount of these traits was observed in the control. The results of mean comparison showed that the highest proline content was related to the 150 mM salt and 0.5 g/L nano-chitosan foliar application treatment at 3.44 µmol/g fresh weight. The lowest proline concentration was observed in the control treatment at 1.64 µmol/g fresh weight. According to the obtained results, it seems that foliar application of nano-chitosan can be introduced as a suitable modifier to increase the performance of Calendula officinalis L. under salinity stress conditions.

کلیدواژه‌ها [English]

  • chitosan
  • ion leakage
  • Proline
  • relative leaf water content
  • salinity stress

EXTENDED ABSTRACT

 

Background and Objectives

Since salinity stress is considered a limiting factor in agricultural production, research on mechanisms that can increase plant resistance is needed. At the same time, the use of biological modifiers can eliminate the effects of stress and improve plant growth. Also, considering the important position of marigold in meeting medicinal, food and industrial needs and taking into account the results of previous research, chitosan and nanochitosan were used in this study to reduce damage caused by salinity and increase marigold yield.

Methodology

In order to investigate the effect of chitosan and nano-chitosan on morphological and physiological characteristics of marigold under salt stress, an experiment was conducted in greenhouse conditions in a factorial and completely randomized design with three replications. The treatments included four salinity levels (0, 50, 100 and 150 mM NaCl source) and five modifier levels (0, 0.25, 0.5 g.l-1 chitosan and 0.25 and 0.5 g.l-1 nano-chitosan). After the plant growth period, plant height, fresh and dry weight, flower fresh and dry weight, flower number, leaf number, ion leakage, relative leaf water content, photosynthetic pigments and proline content were determined by conventional methods.

Results

The results showed that the highest fresh and dry weight of the whole plant, fresh and dry weight of flowers, number of flowers, number of leaves and height in the plant were observed in the treatment of foliar spraying of 0. g.l-1 of nano chitosan under non-stress conditions. Also, the lowest amount of these traits was found in the stress treatment of 150 mM NaCl salt and without the use of modifiers. Salinity stress reduced the relative water content of leaves, and the application of 150 mM NaCl salt reduced the relative water content of leaves by 12.6% compared to the control treatment. Foliar spraying of modifiers caused a significant increase in relative leaf water content compared to the control treatment. Salinity stress increased ion leakage. But foliar spraying of moderators reduced ion leakage. Also, the highest amount of chlorophyll and carotenoid was observed in the foliar application of 0.5 g.l-1 of nano-chitosan under non-stress conditions and the lowest amount of these traits was observed in the control treatment. The results of the mean comparison showed that the highest amount of proline was related to the treatment of 150 mM salt and 0.5 g.l-1 nano-chitosan foliar spraying at the rate of 3.44 μmol.g-1 fresh weight. The lowest concentration of proline was observed in the treatment of no stress and no application of modifier at the rate of 1.64 μmol.g-1 of fresh weight.

Conclusion

 According to the study, increasing sodium chloride concentration negatively impacted various morphological and physiological indices of marigold. Specifically, the height, fresh and dry weight of the entire plant, fresh and dry weight of flowers, the number of flowers and leaves, relative water content of leaves, and photosynthetic pigments all decreased. Additionally, salinity stress led to an increase in proline content and ion leakage. However, the application of foliar sprays with chitosan and nanochitosan showed significant improvement in all aspects of plant growth and development. Notably, nanochitosan proved to be more effective in alleviating salinity stress compared to conventional chitosan. This suggests that nanochitosan may be a promising solution for enhancing salt stress tolerance when used with other products. The enhanced effectiveness of nanochitosan can be attributed to its smaller particle size, larger surface area, and greater permeability compared to regular chitosan, making it more efficient in mitigating salinity effects. Overall, incorporating chitosan and nanochitosan could be beneficial for improving the growth and resilience of marigold plants in saline environments, as these compounds not only help retain moisture but also minimize the adverse impacts of salinity by activating the plant's defense mechanisms.

Author Contributions

 For this research article, the individual contributions are as follows: “Conceptualization, [Author A and B]; methodology, [Author B]; software, [Author A]; validation, [Author B]; formal analysis, [Author A]; investigation, resources, data curation, writing—original draft preparation, [Author A] writing—review and editing, visualization, supervision, project administration, funding acquisition [AuthorA and B]. All authors have read and agreed to the published version of the manuscript.” Please turn to the CRediT taxonomy for the term explanation. Authorship must be limited to those who have contributed substantially to the work re-ported.

Data Availability Statement

The data that support the findings of this study are available.

 For further inquiries regarding the data, please contact author’s email.

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The author declares no conflict of interest.

 

 

Abdollahzadeh, M., Elhamirad, A. H., Shariatifar, N., Saeidiasl, M., & Armin, M. (2023). Effects of nano-chitosan coatings incorporating with free/nano-encapsulated essential oil of Golpar (Heracleum persicum L.) on quality characteristics and safety of rainbow trout (Oncorhynchus mykiss). International Journal of Food Microbiology385, 109996.
Akhtar, G., Faried, H. N., Razzaq, K., Ullah, S., Wattoo, F. M., Shehzad, M. A., ... & Chattha, M. S. (2022). Chitosan-induced physiological and biochemical regulations confer drought tolerance in pot marigold (Calendula officinalis L.). Agronomy12(2), 474. https://doi.org/10.3390/agronomy12020474.
Alenazi, M. M., El-Ebidy, A. M., El-Shehaby, O. A., Seleiman, M. F., Aldhuwaib, K. J., & Abdel-Aziz, H. M. (2024). Chitosan and chitosan nanoparticles differentially alleviate salinity stress in Phaseolus vulgaris L. plants. Plants13(3), 398. https://doi.org/10.3390/plants13030398.
Ali, E. F., El-Shehawi, A. M., Ibrahim, O. H. M., Abdul-Hafeez, E. Y., Moussa, M. M., & Hassan, F. A. S. (2021). A vital role of chitosan nanoparticles in improvisation the drought stress tolerance in Catharanthus roseus (L.) through biochemical and gene expression modulation. Plant Physiology and Biochemistry161, 166-175.
Amer, A., & Shoala, T. (2020). Physiological and phenotypic characters of sweet marjoram in response to pre-harvest application of hydrogen peroxide or chitosan nanoparticles. Scientia Horticulturae268, 109374. https://doi.org/10.1016/j.scienta.2020.109374.
Arough, Y. K., Sharifi, R. S., Sedghi, M., & Barmaki, M. (2016). Effect of zinc and bio fertilizers on antioxidant enzymes activity, chlorophyll content, soluble sugars and proline in triticale under salinity condition. Notulae Botanicae Horti Agrobotanici Cluj-Napoca44(1), 116-124. doi:10.15835/nbha44110224.
Arshan, K., Samsampour, D., & Pasalari, H. (2023). Effect of sodium nitroprusside (SNP) on morpho-physiological characteristics of peppermint (Mentha piperita L.) under salinity stress. Journal of Plant Production Research30(1), 85-102. doi: 10.22077/escs.2017.527. (In Persian with English abstract).
Asgarian, H., Abdossi, V. (2021). Study of phytochemical compounds and essential oil function of Marigold (Calendula officinalis L.) plant under the salinity stress by Nacl with the application of Humic acid and Selenium. Iranian Journal of Plant and Biotechnology, 16 (4), 33-44. (In Persian with English abstract).
Askari, H. , Zeinali, A. , Parsa, M. , kashanchi, M. , Azadi Gonbad, R. , Banaei, A. , Safaei-Chaeikar, S. , Kahneh, E. and Seraji, A. (2024). Evaluation of the effect of foliar application of nano-chitosan and mineral nutrition (NPK) on the catechins content in green tea (Kashef var.) leaves through analysis of some biochemical, physiological and molecular parameters. Iranian Journal of Medicinal and Aromatic Plants Research40(1), 79-103. doi: 10.22092/ijmapr.2023.363015.3348. (In Persian with English abstract).
Aydin Acar, C., Gencer, M. A., Pehlivanoglu, S., Yesilot, S., & Donmez, S. (2024). Green and eco‐friendly biosynthesis of zinc oxide nanoparticles using Calendula officinalis flower extract: Wound healing potential and antioxidant activity. International wound journal21(1), e14413.
Bandurska, H. (1998). Implication of ABA and proline on cell membrane injury of water deficit stressed barley seedlings. Acta physiologiae plantarum20, 375-381.
Bates, L. S., Waldren, R. P. A., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and soil39, 205-207.
Chandra, P., Singh, A., Prajapat, K., Rai, A. K., & Yadav, R. K. (2022). Native arbuscular mycorrhizal fungi improve growth, biomass yield, and phosphorus nutrition of sorghum in saline and sodic soils of the semi–arid region. Environmental and Experimental Botany201, 104982.
Correa, C., Ming, L. C., & Scheffer, M. C. (1994). Cultivo de plantas medicinais, condimentares e aromáticas. Jaboticabal: Funep.
Demidchik, V., Straltsova, D., Medvedev, S. S., Pozhvanov, G. A., Sokolik, A., & Yurin, V. (2014). Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. Journal of experimental botany65(5), 1259-1270. https://doi.org/10.1093/jxb/eru004.
Divya, K., & Jisha, M. S. (2018). Chitosan nanoparticles preparation and applications. Environmental chemistry letters16, 101-112. https://doi.org/10.1007/s10311-017-0670-y.
Du, W. L., Xu, Z. R., Han, X. Y., Xu, Y. L., & Miao, Z. G. (2008). Preparation, characterization and adsorption properties of chitosan nanoparticles for eosin Y as a model anionic dye. Journal of hazardous materials153(1-2), 152-156.
Du, Y., Liu, X., Zhang, L., & Zhou, W. (2023). Drip irrigation in agricultural saline-alkali land controls soil salinity and improves crop yield: Evidence from a global meta-analysis. Science of the Total Environment880, 163226.
Dzung, N. A., Khanh, V. T. P., & Dzung, T. T. (2011). Research on impact of chitosan oligomers on biophysical characteristics, growth, development and drought resistance of coffee. Carbohydrate polymers84(2), 751-755.
Emami Bistgani, Z. , Siadat, S. , Bakhshandeh, A. and Ghasemi Pirbalouti, A. (2017). The effect of drought stress and elicitor of chitosan on photosynthetic pigments, proline, soluble sugars and lipid peroxidation in Thymus deanensis Celak. in Shahrekord climate. Environmental Stresses in Crop Sciences10(1), 12-19. doi: 10.22077/escs.2017.527. (In Persian)
Gazim, Z. C., Rezende, C. M., Fraga, S. R., Dias Filho, B. P., Nakamura, C. V., & Cortez, D. A. G. (2008). Analysis of the essential oils from Calendula officinalis growing in Brazil using three different extraction procedures. Revista Brasileira de Ciências Farmacêuticas44, 391-395.
Ghasemi, V., Nia, A. E., Rezaeinejad, A., & Mumivand, H. (2023). The effect of different levels of salinity stress and cultivar on biochemical and physiological characteristics and nutrient concentration of William Sweet (Dianthus barbatus). Plant Production Research, 30 (1), 1-19.DOI: 10.22069/JOPP.2021.19072.2815. (In Persian with English abstract).
Gong, D. H., Wang, G. Z., Si, W. T., Zhou, Y., Liu, Z., & Jia, J. (2018). Effects of salt stress on photosynthetic pigments and activity of ribulose-1, 5-bisphosphate carboxylase/oxygenase in Kalidium foliatum. Russian Journal of Plant Physiology65, 98-103.
Guo, J., Shan, C., Zhang, Y., Wang, X., Tian, H., Han, G., ... & Wang, B. (2022). Mechanisms of salt tolerance and molecular breeding of salt-tolerant ornamental plants. Frontiers in Plant Science13, 854116. doi: 10.3389/fpls.2022.854116.
Guzman, M. R., & Marques, I. (2023). Effect of varied salinity on marigold flowers: reduced size and quantity despite enhanced antioxidant activity. Agronomy13(12), 3076.
Guzman, M. R., & Marques, I. (2023). Effect of Varied Salinity on Marigold Flowers: Reduced Size and Quantity Despite Enhanced Antioxidant Activity. Agronomy13(12), 3076. https://doi.org/10.3390/ agronomy13123076.
Hasanuzzaman, M., Raihan, M. R. H., Masud, A. A. C., Rahman, K., Nowroz, F., Rahman, M., ... & Fujita, M. (2021). Regulation of reactive oxygen species and antioxidant defense in plants under salinity. International Journal of Molecular Sciences22(17), 9326. https://doi.org/10.3390/ ijms22179326
Hassan, F. A. S., Ali, E., Gaber, A., Fetouh, M. I., & Mazrou, R. (2021). Chitosan nanoparticles effectively combat salinity stress by enhancing antioxidant activity and alkaloid biosynthesis in Catharanthus roseus (L.) G. Don. Plant Physiology and Biochemistry162, 291-300.
Iber, B. T., Kasan, N. A., Torsabo, D., & Omuwa, J. W. (2022). A review of various sources of chitin and chitosan in nature. Journal of Renewable Materials10(4), 1097. DOI: 10.32604/jrm.2022.018142
Idrees, M., Khan, M. M. A., Naeem, M., Aftab, T., Hashmi, N., Alam, M., & Moinuddin. (2011). Modulation of defence responses by improving photosynthetic activity, antioxidative metabolism, and vincristine and vinblastine accumulation in Catharanthus roseus (L.) G. Don through salicylic acid under water stress. Russian agricultural sciences37, 474-482.
Jafari, S., Mousavi-Fard, S., Rezaei Nejad, A., Mumivand, H., & Sorkheh, K. (2022). Effects of chitosan and titanium dioxide (bulk and nano) foliar application on yield and biochemical responses of Silybum marianum (L. Gaertn.) ecotypes. Iranian Journal of Medicinal and Aromatic Plants Research38(3), 450-463. doi: 6.357559.2022.IJMAPR/22092.1 (In Persian with English abstract).
Kalvatchev, Z., Walder, R., & Garzaro, D. (1997). Anti-HIV activity of extracts from Calendula officinalis flowers. Biomedicine & pharmacotherapy51(4), 176-180.
Khairy, A. M., Tohamy, M. R., Zayed, M. A., Mahmoud, S. F., El-Tahan, A. M., El-Saadony, M. T., & Mesiha, P. K. (2022). Eco-friendly application of nano-chitosan for controlling potato and tomato bacterial wilt. Saudi Journal of Biological Sciences29(4), 2199-2209.
Khaled, H., & Fawy, H. A. (2011). Effect of different levels of humic acids on the nutrient content, plant growth, and soil properties under conditions of salinity. Soil and Water Research6(1), 21.
Khalid, K. A., & da Silva, J. T. (2012). Biology of Calendula officinalis Linn.: focus on pharmacology, biological activities and agronomic practices. Medicinal and Aromatic Plant Science and Biotechnology6(1), 12-27.
Khoshkho, M., Sheibani, B., Rahmani, B., & Tafazzoli, A. (2011). Principles of Gardening. Shiraz University Press. 596 pages. (In Persian).
Koksal, N., Alkan-Torun, A., Kulahlioglu, I., Ertargin, E., & Karalar, E. (2016). Ion uptake of marigold under saline growth conditions. SpringerPlus5, 1-12.
Koksal, N., Alkan-Torun, A., Kulahlioglu, I., Ertargin, E., & Karalar, E. (2016). Ion uptake of marigold under saline growth conditions. SpringerPlus5, 1-12. doi: 10.1186/s40064-016-1815-3
Lawlor, D. W., & Cornic, G. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, cell & environment25(2), 275-294.
Lee, S., Hao, L. T., Park, J., Oh, D. X., & Hwang, D. S. (2023). Nanochitin and nanochitosan: Chitin nanostructure engineering with multiscale properties for biomedical and environmental applications. Advanced Materials35(4), 2203325. https://doi.org/10.1002/adma.202203325.
Lei, P., Xu, Z., Liang, J., Luo, X., Zhang, Y., Feng, X., & Xu, H. (2016). Poly (γ-glutamic acid) enhanced tolerance to salt stress by promoting proline accumulation in Brassica napus L. Plant Growth Regulation78, 233-241.
Lichtenthaler, H. K. (1987). [34] Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In Methods in enzymology (Vol. 148, pp. 350-382). Academic Press.
Lutts, S., Kinet, J. M., & Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativaL.) cultivars differing in salinity resistance. Annals of botany78(3), 389-398., https://doi.org/10.1006/anbo.1996.0134.
Mahdavi, B., & Rahimi, A. (2013). Seed priming with chitosan improves the germination and growth performance of ajowan (Carum copticum) under salt stress. Eurasian Journal of Biosciences7. http://dx.doi.org/10.5053/ejobios.2013.7.0.9.
Mansouri, A., Ahmadi, A. and Omidi, H. (2017). Effect of chitosan and iron oxide nanoparticles on germination and early growth indices of safflower (Carthamus tinctorius L.) under salt stress conditions. Seed Research Journal. 24(7), 72-81. (In Persian).
Moameni A. (2011). Geographical distribution and salinity levels of soil resources of Iran. Iranian Journal of Soil Research (Formerly soil and water sciences), 24(3): 203-215. (In Persian)
Naderi, S., Fakheri, B. A., & Seraji, M. (2017). The effect of chitosan on some physiological and biochemical characteristics of Ajowan (Carum copticum L.). Crop Science Research in Arid Regions1(1), 51-64. doi: 10.22034/CSRAR.01.01.05 (In Persian with English abstract).
Omidbeigi, R. (1990). Approaches to the production and processing of medicinal plants. Astan Quds Razavi Publications, Mashhad. (In Persian).
Pandey, P., Tripathi, A., Dwivedi, S., Lal, K., & Jhang, T. (2023). Deciphering the mechanisms, hormonal signaling, and potential applications of endophytic microbes to mediate stress tolerance in medicinal plants. Frontiers in Plant Science14, 1250020. doi: 10.3389/fpls.2023.1250020.
Parihar, P., Singh, S., Singh, R., Singh, V. P., & Prasad, S. M. (2015). Effect of salinity stress on plants and its tolerance strategies: a review. Environmental science and pollution research22, 4056-4075. DOI: 10.1007/s11356­014­3739­1
Per, T. S., Khan, N. A., Reddy, P. S., Masood, A., Hasanuzzaman, M., Khan, M. I. R., & Anjum, N. A. (2017). Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: Phytohormones, mineral nutrients and transgenics. Plant physiology and biochemistry115, 126-140. http://dx.doi.org/10.1016/j.plaphy.2017.03.018.
Razavi, S. E. (2021). Role of Pseudomonas fluorescens in mitigating salinity stress in safflower (Carthamus tinctorius L.) through physio-biochemical responses. Journal of Plant Production Research28(4), 25-41. doi: 10.22069/jopp.2021.17185.2584. (In Persian with English abstract).
Rezaei Aderyani, F., Rezaei, A., & Sharafi, Y. (2017). Investigation of improving salinity stress damages in Diospyros lotus seedlings by putrescine and chitosan. Journal of Crops Improvement19(3), 671-686. https://doi.org/10.22059/jci.2017.60483. (In Persian with English abstract).
Rezaei Chianeh, A., Jamali, M., Pirzad, A. R. and Tofigh, S.(2015). The effect of mycorrhizal fungi on some morphophysiological traits and yield of summer savory (Satureja hortensis L.) under salt stress conditions. Plant Process and Yield, 5(17), 15-29. (In Persian).
Ritchie, S. W., Nguyen, H. T., & Holaday, A. S. (1990). Leaf water content and gas‐exchange parameters of two wheat genotypes differing in drought resistance. Crop science30(1), 105-111.DOI: https://doi.org/10.2135/CROPSCI1990.0011183X003000010025X.
Robatjazi, R., Roshandel, P., & Hooshmand, S. D. (2020). Benefits of silicon nutrition on growth, physiological and phytochemical attributes of basil upon salinity stress. International Journal of Horticultural Science and Technology7(1), 37-50. DOI: 10.22059/ijhst.2020.288551.318.
Roychoudhury, A., Datta, K., & Tagore, R. (2022). Influence of chitosan and chitosan based nanoparticles against abiotic stress in plants. In Role of Chitosan and Chitosan-based nanomaterials in plant sciences (pp. 297-320). Academic Press.
Saadat, S., Rezaei, H., Bagheri, Y. R., Mirkhani, R. & Esmaeil Nejad, L. (2023). Salinity map of agricultural soils of Iran, Technical Publication No. 630, National Soil and Water Research Institute, Karaj, Iran. (In Persian).
Sahab, S., Suhani, I., Srivastava, V., Chauhan, P. S., Singh, R. P., & Prasad, V. (2021). Potential risk assessment of soil salinity to agroecosystem sustainability: Current status and management strategies. Science of the Total Environment764, 144164. https://doi.org/10.1016/j.scitotenv.2020.144164.
Shabani Fard, R., Aghaee Hanjani, E., & Danaee, E. (2024). Effects of Polyamines on Morphophysiological Traits of Calendula officinalis L. under Salinity Stress Caused by Potassium Chloride and Sodium Chloride Salts. International Journal of Horticultural Science and Technology11(2), 189-200.
Shahraki, B., Bayat, H., Aminifard, M. H., & Azarmi Atajan, F. (2022). Effects of foliar application of selenium and nano-selenium on growth, flowering, and antioxidant activity of pot marigold (Calendula officinalis L.) under salinity stress conditions. Communications in Soil Science and Plant Analysis53(20), 2749-2765.
Shehab, G. G., Ahmwd, O. K., & El-Beltagi, H. S. (2010). Effects of various chemical agents for alleviation of drought stress in rice plants (Oryza sativa L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca38(1), 139-148.
Sheikhalipour, M., Esmaielpour, B., Gohari, G., Haghighi, M., Jafari, H., Farhadi, H., ... & Kalisz, A. (2021). Salt stress mitigation via the foliar application of chitosan-functionalized selenium and anatase titanium dioxide nanoparticles in stevia (Stevia rebaudiana Bertoni). Molecules26(13), 4090. https://doi.org/10.3390/ molecules26134090.
Terry, L. A., & Joyce, D. C. (2004). Elicitors of induced disease resistance in postharvest horticultural crops: a brief review. Postharvest Biology and Technology32(1), 1-13.
Tian, B., & Liu, J. (2023). Smart stimuli-responsive chitosan hydrogel for drug delivery: A review. International Journal of Biological Macromolecules235, 123902.
Tokatlı, K., & Demirdöven, A. (2020). Effects of chitosan edible film coatings on the physicochemical and microbiological qualities of sweet cherry (Prunus avium L.). Scientia Horticulturae259, 108656.
Ullah, R., Sher, S., Muhammad, Z., Afriq Jan, S., & Nafees, M. (2022). Modulating response of sunflower (Hellianthus annuus) to induced salinity stress through application of engineered urea functionalized hydroxyapatite nanoparticles. Microscopy Research and Technique85(1), 244-252. doi: 10.1002/jemt.23900
Uthairatanakij, A., Teixeira da Silva, J. A., & Obsuwan, K. (2007). Chitosan for improving orchid production and quality. Orchid Science and Biotechnology1(1), 1-5.
Wang, X., Cui, Y., Zhang, X., Ju, W., Duan, C., Wang, Y., & Fang, L. (2020). A novel extracellular enzyme stoichiometry method to evaluate soil heavy metal contamination: evidence derived from microbial metabolic limitation. Science of the Total Environment738, 139709.
Yang, F., Hu, J., Li, J., Wu, X., & Qian, Y. (2009). Chitosan enhances leaf membrane stability and antioxidant enzyme activities in apple seedlings under drought stress. Plant Growth Regulation58, 131-136.
Zafar-Ul-Hye, M., Mahmood, F., Danish, S., Hussain, S., Gul, M., Yaseen, R., & Shaaban, M. (2020). Evaluating efficacy of plant growth promoting rhizobacteria and potassium fertilizer on spinach growth under salt stress. Pak. J. Bot52(4), 1441-1447. DOI: http://dx.doi.org/10.30848/PJB2020-4(7).
Zhang, W. W., Chong, W. A. N. G., Rui, X. U. E., & Wang, L. J. (2019). Effects of salinity on the soil microbial community and soil fertility. Journal of Integrative Agriculture18(6), 1360-1368.
Zulfiqar, F., Moosa, A., Ali, H. M., Ferrante, A., Nazir, M. M., Makhzoum, A., & Soliman, T. M. (2023). Preharvest melatonin application mitigates arsenic-induced oxidative stress and improves vase life of tuberose (Polianthes tuberosa L.) cut flowers. South African Journal of Botany163, 330-337.