Abdollahzadeh, M., Elhamirad, A. H., Shariatifar, N., Saeidiasl, M., & Armin, M. (2023). Effects of nano-chitosan coatings incorporating with free/nano-encapsulated essential oil of Golpar (Heracleum persicum L.) on quality characteristics and safety of rainbow trout (Oncorhynchus mykiss). International Journal of Food Microbiology, 385, 109996.
Akhtar, G., Faried, H. N., Razzaq, K., Ullah, S., Wattoo, F. M., Shehzad, M. A., ... & Chattha, M. S. (2022). Chitosan-induced physiological and biochemical regulations confer drought tolerance in pot marigold (
Calendula officinalis L.).
Agronomy,
12(2), 474.
https://doi.org/10.3390/agronomy12020474.
Alenazi, M. M., El-Ebidy, A. M., El-Shehaby, O. A., Seleiman, M. F., Aldhuwaib, K. J., & Abdel-Aziz, H. M. (2024). Chitosan and chitosan nanoparticles differentially alleviate salinity stress in Phaseolus vulgaris L. plants.
Plants,
13(3), 398.
https://doi.org/10.3390/plants13030398.
Ali, E. F., El-Shehawi, A. M., Ibrahim, O. H. M., Abdul-Hafeez, E. Y., Moussa, M. M., & Hassan, F. A. S. (2021). A vital role of chitosan nanoparticles in improvisation the drought stress tolerance in Catharanthus roseus (L.) through biochemical and gene expression modulation. Plant Physiology and Biochemistry, 161, 166-175.
Amer, A., & Shoala, T. (2020). Physiological and phenotypic characters of sweet marjoram in response to pre-harvest application of hydrogen peroxide or chitosan nanoparticles. Scientia Horticulturae, 268, 109374. https://doi.org/10.1016/j.scienta.2020.109374.
Arough, Y. K., Sharifi, R. S., Sedghi, M., & Barmaki, M. (2016). Effect of zinc and bio fertilizers on antioxidant enzymes activity, chlorophyll content, soluble sugars and proline in triticale under salinity condition. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 44(1), 116-124. doi:10.15835/nbha44110224.
Arshan, K., Samsampour, D., & Pasalari, H. (2023). Effect of sodium nitroprusside (SNP) on morpho-physiological characteristics of peppermint (Mentha piperita L.) under salinity stress. Journal of Plant Production Research, 30(1), 85-102. doi: 10.22077/escs.2017.527. (In Persian with English abstract).
Asgarian, H., Abdossi, V. (2021). Study of phytochemical compounds and essential oil function of Marigold (Calendula officinalis L.) plant under the salinity stress by Nacl with the application of Humic acid and Selenium. Iranian Journal of Plant and Biotechnology, 16 (4), 33-44. (In Persian with English abstract).
Askari, H. , Zeinali, A. , Parsa, M. , kashanchi, M. , Azadi Gonbad, R. , Banaei, A. , Safaei-Chaeikar, S. , Kahneh, E. and Seraji, A. (2024). Evaluation of the effect of foliar application of nano-chitosan and mineral nutrition (NPK) on the catechins content in green tea (Kashef var.) leaves through analysis of some biochemical, physiological and molecular parameters. Iranian Journal of Medicinal and Aromatic Plants Research, 40(1), 79-103. doi: 10.22092/ijmapr.2023.363015.3348. (In Persian with English abstract).
Aydin Acar, C., Gencer, M. A., Pehlivanoglu, S., Yesilot, S., & Donmez, S. (2024). Green and eco‐friendly biosynthesis of zinc oxide nanoparticles using Calendula officinalis flower extract: Wound healing potential and antioxidant activity. International wound journal, 21(1), e14413.
Bandurska, H. (1998). Implication of ABA and proline on cell membrane injury of water deficit stressed barley seedlings. Acta physiologiae plantarum, 20, 375-381.
Bates, L. S., Waldren, R. P. A., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and soil, 39, 205-207.
Chandra, P., Singh, A., Prajapat, K., Rai, A. K., & Yadav, R. K. (2022). Native arbuscular mycorrhizal fungi improve growth, biomass yield, and phosphorus nutrition of sorghum in saline and sodic soils of the semi–arid region. Environmental and Experimental Botany, 201, 104982.
Correa, C., Ming, L. C., & Scheffer, M. C. (1994). Cultivo de plantas medicinais, condimentares e aromáticas. Jaboticabal: Funep.
Demidchik, V., Straltsova, D., Medvedev, S. S., Pozhvanov, G. A., Sokolik, A., & Yurin, V. (2014). Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment.
Journal of experimental botany,
65(5), 1259-1270.
https://doi.org/10.1093/jxb/eru004.
Du, W. L., Xu, Z. R., Han, X. Y., Xu, Y. L., & Miao, Z. G. (2008). Preparation, characterization and adsorption properties of chitosan nanoparticles for eosin Y as a model anionic dye. Journal of hazardous materials, 153(1-2), 152-156.
Du, Y., Liu, X., Zhang, L., & Zhou, W. (2023). Drip irrigation in agricultural saline-alkali land controls soil salinity and improves crop yield: Evidence from a global meta-analysis. Science of the Total Environment, 880, 163226.
Dzung, N. A., Khanh, V. T. P., & Dzung, T. T. (2011). Research on impact of chitosan oligomers on biophysical characteristics, growth, development and drought resistance of coffee. Carbohydrate polymers, 84(2), 751-755.
Emami Bistgani, Z. , Siadat, S. , Bakhshandeh, A. and Ghasemi Pirbalouti, A. (2017). The effect of drought stress and elicitor of chitosan on photosynthetic pigments, proline, soluble sugars and lipid peroxidation in Thymus deanensis Celak. in Shahrekord climate. Environmental Stresses in Crop Sciences, 10(1), 12-19. doi: 10.22077/escs.2017.527. (In Persian)
Gazim, Z. C., Rezende, C. M., Fraga, S. R., Dias Filho, B. P., Nakamura, C. V., & Cortez, D. A. G. (2008). Analysis of the essential oils from Calendula officinalis growing in Brazil using three different extraction procedures. Revista Brasileira de Ciências Farmacêuticas, 44, 391-395.
Ghasemi, V., Nia, A. E., Rezaeinejad, A., & Mumivand, H. (2023). The effect of different levels of salinity stress and cultivar on biochemical and physiological characteristics and nutrient concentration of William Sweet (Dianthus barbatus). Plant Production Research, 30 (1), 1-19.DOI: 10.22069/JOPP.2021.19072.2815. (In Persian with English abstract).
Gong, D. H., Wang, G. Z., Si, W. T., Zhou, Y., Liu, Z., & Jia, J. (2018). Effects of salt stress on photosynthetic pigments and activity of ribulose-1, 5-bisphosphate carboxylase/oxygenase in Kalidium foliatum. Russian Journal of Plant Physiology, 65, 98-103.
Guo, J., Shan, C., Zhang, Y., Wang, X., Tian, H., Han, G., ... & Wang, B. (2022). Mechanisms of salt tolerance and molecular breeding of salt-tolerant ornamental plants. Frontiers in Plant Science, 13, 854116. doi: 10.3389/fpls.2022.854116.
Guzman, M. R., & Marques, I. (2023). Effect of varied salinity on marigold flowers: reduced size and quantity despite enhanced antioxidant activity. Agronomy, 13(12), 3076.
Guzman, M. R., & Marques, I. (2023). Effect of Varied Salinity on Marigold Flowers: Reduced Size and Quantity Despite Enhanced Antioxidant Activity. Agronomy, 13(12), 3076. https://doi.org/10.3390/ agronomy13123076.
Hasanuzzaman, M., Raihan, M. R. H., Masud, A. A. C., Rahman, K., Nowroz, F., Rahman, M., ... & Fujita, M. (2021). Regulation of reactive oxygen species and antioxidant defense in plants under salinity. International Journal of Molecular Sciences, 22(17), 9326. https://doi.org/10.3390/ ijms22179326
Hassan, F. A. S., Ali, E., Gaber, A., Fetouh, M. I., & Mazrou, R. (2021). Chitosan nanoparticles effectively combat salinity stress by enhancing antioxidant activity and alkaloid biosynthesis in Catharanthus roseus (L.) G. Don. Plant Physiology and Biochemistry, 162, 291-300.
Iber, B. T., Kasan, N. A., Torsabo, D., & Omuwa, J. W. (2022). A review of various sources of chitin and chitosan in nature. Journal of Renewable Materials, 10(4), 1097. DOI: 10.32604/jrm.2022.018142
Idrees, M., Khan, M. M. A., Naeem, M., Aftab, T., Hashmi, N., Alam, M., & Moinuddin. (2011). Modulation of defence responses by improving photosynthetic activity, antioxidative metabolism, and vincristine and vinblastine accumulation in Catharanthus roseus (L.) G. Don through salicylic acid under water stress. Russian agricultural sciences, 37, 474-482.
Jafari, S., Mousavi-Fard, S., Rezaei Nejad, A., Mumivand, H., & Sorkheh, K. (2022). Effects of chitosan and titanium dioxide (bulk and nano) foliar application on yield and biochemical responses of Silybum marianum (L. Gaertn.) ecotypes. Iranian Journal of Medicinal and Aromatic Plants Research, 38(3), 450-463. doi: 6.357559.2022.IJMAPR/22092.1 (In Persian with English abstract).
Kalvatchev, Z., Walder, R., & Garzaro, D. (1997). Anti-HIV activity of extracts from Calendula officinalis flowers. Biomedicine & pharmacotherapy, 51(4), 176-180.
Khairy, A. M., Tohamy, M. R., Zayed, M. A., Mahmoud, S. F., El-Tahan, A. M., El-Saadony, M. T., & Mesiha, P. K. (2022). Eco-friendly application of nano-chitosan for controlling potato and tomato bacterial wilt. Saudi Journal of Biological Sciences, 29(4), 2199-2209.
Khaled, H., & Fawy, H. A. (2011). Effect of different levels of humic acids on the nutrient content, plant growth, and soil properties under conditions of salinity. Soil and Water Research, 6(1), 21.
Khalid, K. A., & da Silva, J. T. (2012). Biology of Calendula officinalis Linn.: focus on pharmacology, biological activities and agronomic practices. Medicinal and Aromatic Plant Science and Biotechnology, 6(1), 12-27.
Khoshkho, M., Sheibani, B., Rahmani, B., & Tafazzoli, A. (2011). Principles of Gardening. Shiraz University Press. 596 pages. (In Persian).
Koksal, N., Alkan-Torun, A., Kulahlioglu, I., Ertargin, E., & Karalar, E. (2016). Ion uptake of marigold under saline growth conditions. SpringerPlus, 5, 1-12.
Koksal, N., Alkan-Torun, A., Kulahlioglu, I., Ertargin, E., & Karalar, E. (2016). Ion uptake of marigold under saline growth conditions. SpringerPlus, 5, 1-12. doi: 10.1186/s40064-016-1815-3
Lawlor, D. W., & Cornic, G. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, cell & environment, 25(2), 275-294.
Lee, S., Hao, L. T., Park, J., Oh, D. X., & Hwang, D. S. (2023). Nanochitin and nanochitosan: Chitin nanostructure engineering with multiscale properties for biomedical and environmental applications. Advanced Materials, 35(4), 2203325. https://doi.org/10.1002/adma.202203325.
Lei, P., Xu, Z., Liang, J., Luo, X., Zhang, Y., Feng, X., & Xu, H. (2016). Poly (γ-glutamic acid) enhanced tolerance to salt stress by promoting proline accumulation in Brassica napus L. Plant Growth Regulation, 78, 233-241.
Lichtenthaler, H. K. (1987). [34] Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In Methods in enzymology (Vol. 148, pp. 350-382). Academic Press.
Lutts, S., Kinet, J. M., & Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativaL.) cultivars differing in salinity resistance.
Annals of botany,
78(3), 389-398.,
https://doi.org/10.1006/anbo.1996.0134.
Mahdavi, B., & Rahimi, A. (2013). Seed priming with chitosan improves the germination and growth performance of ajowan (Carum copticum) under salt stress. Eurasian Journal of Biosciences, 7. http://dx.doi.org/10.5053/ejobios.2013.7.0.9.
Mansouri, A., Ahmadi, A. and Omidi, H. (2017). Effect of chitosan and iron oxide nanoparticles on germination and early growth indices of safflower (Carthamus tinctorius L.) under salt stress conditions. Seed Research Journal. 24(7), 72-81. (In Persian).
Moameni A. (2011). Geographical distribution and salinity levels of soil resources of Iran. Iranian Journal of Soil Research (Formerly soil and water sciences), 24(3): 203-215. (In Persian)
Naderi, S., Fakheri, B. A., & Seraji, M. (2017). The effect of chitosan on some physiological and biochemical characteristics of Ajowan (
Carum copticum L.).
Crop Science Research in Arid Regions,
1(1), 51-64. doi:
10.22034/CSRAR.01.01.05 (In Persian with English abstract).
Omidbeigi, R. (1990). Approaches to the production and processing of medicinal plants. Astan Quds Razavi Publications, Mashhad. (In Persian).
Pandey, P., Tripathi, A., Dwivedi, S., Lal, K., & Jhang, T. (2023). Deciphering the mechanisms, hormonal signaling, and potential applications of endophytic microbes to mediate stress tolerance in medicinal plants. Frontiers in Plant Science, 14, 1250020. doi: 10.3389/fpls.2023.1250020.
Parihar, P., Singh, S., Singh, R., Singh, V. P., & Prasad, S. M. (2015). Effect of salinity stress on plants and its tolerance strategies: a review. Environmental science and pollution research, 22, 4056-4075. DOI: 10.1007/s1135601437391
Per, T. S., Khan, N. A., Reddy, P. S., Masood, A., Hasanuzzaman, M., Khan, M. I. R., & Anjum, N. A. (2017). Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: Phytohormones, mineral nutrients and transgenics. Plant physiology and biochemistry, 115, 126-140. http://dx.doi.org/10.1016/j.plaphy.2017.03.018.
Razavi, S. E. (2021). Role of Pseudomonas fluorescens in mitigating salinity stress in safflower (Carthamus tinctorius L.) through physio-biochemical responses. Journal of Plant Production Research, 28(4), 25-41. doi: 10.22069/jopp.2021.17185.2584. (In Persian with English abstract).
Rezaei Aderyani, F., Rezaei, A., & Sharafi, Y. (2017). Investigation of improving salinity stress damages in Diospyros lotus seedlings by putrescine and chitosan.
Journal of Crops Improvement,
19(3), 671-686.
https://doi.org/10.22059/jci.2017.60483. (In Persian with English abstract).
Rezaei Chianeh, A., Jamali, M., Pirzad, A. R. and Tofigh, S.(2015). The effect of mycorrhizal fungi on some morphophysiological traits and yield of summer savory (Satureja hortensis L.) under salt stress conditions. Plant Process and Yield, 5(17), 15-29. (In Persian).
Robatjazi, R., Roshandel, P., & Hooshmand, S. D. (2020). Benefits of silicon nutrition on growth, physiological and phytochemical attributes of basil upon salinity stress. International Journal of Horticultural Science and Technology, 7(1), 37-50. DOI: 10.22059/ijhst.2020.288551.318.
Roychoudhury, A., Datta, K., & Tagore, R. (2022). Influence of chitosan and chitosan based nanoparticles against abiotic stress in plants. In Role of Chitosan and Chitosan-based nanomaterials in plant sciences (pp. 297-320). Academic Press.
Saadat, S., Rezaei, H., Bagheri, Y. R., Mirkhani, R. & Esmaeil Nejad, L. (2023). Salinity map of agricultural soils of Iran, Technical Publication No. 630, National Soil and Water Research Institute, Karaj, Iran. (In Persian).
Sahab, S., Suhani, I., Srivastava, V., Chauhan, P. S., Singh, R. P., & Prasad, V. (2021). Potential risk assessment of soil salinity to agroecosystem sustainability: Current status and management strategies. Science of the Total Environment, 764, 144164. https://doi.org/10.1016/j.scitotenv.2020.144164.
Shabani Fard, R., Aghaee Hanjani, E., & Danaee, E. (2024). Effects of Polyamines on Morphophysiological Traits of Calendula officinalis L. under Salinity Stress Caused by Potassium Chloride and Sodium Chloride Salts. International Journal of Horticultural Science and Technology, 11(2), 189-200.
Shahraki, B., Bayat, H., Aminifard, M. H., & Azarmi Atajan, F. (2022). Effects of foliar application of selenium and nano-selenium on growth, flowering, and antioxidant activity of pot marigold (Calendula officinalis L.) under salinity stress conditions. Communications in Soil Science and Plant Analysis, 53(20), 2749-2765.
Shehab, G. G., Ahmwd, O. K., & El-Beltagi, H. S. (2010). Effects of various chemical agents for alleviation of drought stress in rice plants (Oryza sativa L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(1), 139-148.
Sheikhalipour, M., Esmaielpour, B., Gohari, G., Haghighi, M., Jafari, H., Farhadi, H., ... & Kalisz, A. (2021). Salt stress mitigation via the foliar application of chitosan-functionalized selenium and anatase titanium dioxide nanoparticles in stevia (Stevia rebaudiana Bertoni). Molecules, 26(13), 4090. https://doi.org/10.3390/ molecules26134090.
Terry, L. A., & Joyce, D. C. (2004). Elicitors of induced disease resistance in postharvest horticultural crops: a brief review. Postharvest Biology and Technology, 32(1), 1-13.
Tian, B., & Liu, J. (2023). Smart stimuli-responsive chitosan hydrogel for drug delivery: A review. International Journal of Biological Macromolecules, 235, 123902.
Tokatlı, K., & Demirdöven, A. (2020). Effects of chitosan edible film coatings on the physicochemical and microbiological qualities of sweet cherry (Prunus avium L.). Scientia Horticulturae, 259, 108656.
Ullah, R., Sher, S., Muhammad, Z., Afriq Jan, S., & Nafees, M. (2022). Modulating response of sunflower (Hellianthus annuus) to induced salinity stress through application of engineered urea functionalized hydroxyapatite nanoparticles. Microscopy Research and Technique, 85(1), 244-252. doi: 10.1002/jemt.23900
Uthairatanakij, A., Teixeira da Silva, J. A., & Obsuwan, K. (2007). Chitosan for improving orchid production and quality. Orchid Science and Biotechnology, 1(1), 1-5.
Wang, X., Cui, Y., Zhang, X., Ju, W., Duan, C., Wang, Y., & Fang, L. (2020). A novel extracellular enzyme stoichiometry method to evaluate soil heavy metal contamination: evidence derived from microbial metabolic limitation. Science of the Total Environment, 738, 139709.
Yang, F., Hu, J., Li, J., Wu, X., & Qian, Y. (2009). Chitosan enhances leaf membrane stability and antioxidant enzyme activities in apple seedlings under drought stress. Plant Growth Regulation, 58, 131-136.
Zafar-Ul-Hye, M., Mahmood, F., Danish, S., Hussain, S., Gul, M., Yaseen, R., & Shaaban, M. (2020). Evaluating efficacy of plant growth promoting rhizobacteria and potassium fertilizer on spinach growth under salt stress. Pak. J. Bot, 52(4), 1441-1447. DOI: http://dx.doi.org/10.30848/PJB2020-4(7).
Zhang, W. W., Chong, W. A. N. G., Rui, X. U. E., & Wang, L. J. (2019). Effects of salinity on the soil microbial community and soil fertility. Journal of Integrative Agriculture, 18(6), 1360-1368.
Zulfiqar, F., Moosa, A., Ali, H. M., Ferrante, A., Nazir, M. M., Makhzoum, A., & Soliman, T. M. (2023). Preharvest melatonin application mitigates arsenic-induced oxidative stress and improves vase life of tuberose (Polianthes tuberosa L.) cut flowers. South African Journal of Botany, 163, 330-337.