روشی نوین در پیش‌بینی تغییرات آتی سطح آب‌‌زیرزمینی با الگوریتم‌های k-means و جنگل تصادفی با داده‌های اقلیمی CMIP6 در دشت اسلام‌آباد غرب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه جغرافیا، دانشکدة ادبیات و علوم انسانی، دانشگاه رازی، کرمانشاه، ایران

2 گروه مهندسی آب، دانشکده کشاورزی، دانشگاه رازی، کرمانشاه، ایران

3 گروه مهندسی آب، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، کرمانشاه، ایران

چکیده

این پژوهش تغییرات سطح آب زیرزمینی (GWL) دشت اسلام‌آباد را با استفاده از الگوریتم جنگل تصادفی (RF) و داده‌های اقلیمی CMIP6 پیش‌بینی کرده است. داده‌های GWL از 20 چاه (2014-1997) جمع‌آوری و پس از پردازش و خوشه‌بندی با روش K-Means، مدل‌سازی برای سناریوهای اقلیمی SSP1-2.6، SSP2-4.5  و SSP5-8.5 در سه منطقه جنگه، برف‌آباد و بورگ انجام شد. نتایج نشان داد که در دوره مشاهداتی، منطقه برف‌آباد با تغییرات 7/8 تا 2/10 متر مطلوب‌ترین و منطقه بورگ با 5/15 تا 3/17 متر نامطلوب‌ترین مقدار GWL را داشته است. بیشترین سطح دسترسی در بهار و کمترین عمق در پاییز مشاهده شد. پیش‌بینی‌ها نشان می‌دهد که در آینده دور (2076-2100) تحت سناریوی SSP5-8.5، بیشترین افزایش GWL (3 تا 5/3 متر) در جنگه در پاییز رخ خواهد داد. درSSP1-2.6، بیشترین کاهش در بورگ با افت 5/3 تا 4 متر در بهار و تابستان پیش‌بینی شده است. تحت سناریوهای SSP1-2.6 و SSP2-4.5 در آینده دور شرایط پایدارتر خواهد بود. در دوره مشاهداتی، GWL در تمام مناطق روند نزولی داشته و بیشترین افت سالانه (1متر) در برف‌آباد ثبت شد. در SSP1-2.6، کاهش GWL در آینده نزدیک در بورگ (21/0- m/year) و در آینده میانی در جنگه (14/0- m/year) ادامه خواهد داشت. در SSP2-4.5، این کاهش در آینده دور در تمامی مناطق معنادار بوده و در بورگ بیشترین مقدار (16/0- m/year) را خواهد داشت. مدل RF عملکرد بسیار خوبی داشته (97/0R=  و NSE  بین 89/0 تا 98/0) و مدل NorESM2-MM  دقت پیش‌بینی را تا 5/99 افزایش داده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Novel Method for Predicting Future Changes in Groundwater Level Using K-means and Random Forest Algorithms with CMIP6 Climate Data in the Eslamabad West Plain

نویسندگان [English]

  • Kobra Soltani 1
  • Seyed Ehsan Fatemi 2
  • Jafar Masoompour Samakosh 1
  • Maryam Hafezparast Mavadat 3
1 Department of Geography, Faculty of Literature and Humanities, Razi University, Kermanshah, Iran
2 Water Engineering Department. Faculty of Agriculture. Razi University. Kermanshah., Iran
3 Department of Water Engineering, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
چکیده [English]

This study predicts groundwater level (GWL) variations in the Eslamabad plain using the Random Forest (RF) and CMIP6 climate data. GWL data from 20 wells (1997–2014) were collected and, after processing and clustering using the K-Means, modeling was conducted for different climate scenarios in three regions: Jangeh, Barfabad, and Bureg. The results showed that in the observational period, Barfabad, with variations of 8.7 to 10.2 meters, had the best GWL values, while the Bureg, with 15.5 to 17.3 meters, had the worst. The highest availability was observed in spring and the lowest depth in Fall. Predictions indicate that in the distant future (2076–2100), under the SSP5-8.5 scenario, the greatest GWL increase (3 to 3.5 meters) will occur in Jangeh in Fall. In SSP1-2.6, the greatest decline in Bureg, with a drop of 3.5 to 4 meters, is projected for spring and summer. Under the SSP1-2.6 and SSP2-4.5 scenarios, conditions will be more stable in the distant future. During the observational period, GWL showed a decreasing trend in all regions, with the highest annual decline (1 meter) recorded in Barfabab. In SSP1-2.6, the GWL decrease in the near future in Bureg (-0.21 m/year) and in the mid-future in Jangeh (-0.14 m/year) will continue. In SSP2-4.5, this decrease in the distant future is significant in all regions, with the highest value (-0.16 m/year) in Bureg. The RF model performed very well (R = 0.97, NSE between 0.89 and 0.98), and the NorESM2-MM model improved prediction accuracy up to 99.5%.

کلیدواژه‌ها [English]

  • CMIP6
  • Eslamabad-e-Gharb
  • Groundwater level
  • K_means
  • Random Forest

EXTENDED ABSTRACT

Introduction:

Effective groundwater resource management in arid and semi-arid regions is paramount, especially in the context of climate change. The depletion of groundwater levels (GWL) due to excessive extraction, declining precipitation, and rising temperatures poses severe challenges for agricultural sustainability and potable water availability. Predicting GWL variations is crucial for ensuring long-term water security. Recent advancements in machine learning and climate modeling have significantly enhanced prediction accuracy, facilitating informed decision-making in water resource management. This study employs the Random Forest (RF) algorithm in conjunction with CMIP6 climate data to predict GWL variations in the Eslamabad-e-Gharb plain, incorporating the K-Means clustering method to enhance model precision.

Materials and Methods:

The study area, Eslamabad-e-Gharb plain, situated in western Iran, experiences a semi-humid cold climate with an average annual precipitation of 463 mm. Data were collected from 20 observation wells spanning the period 1997–2014. Historical GWL data were sourced from the national water data repository, while soil moisture data from MERRA2 and future climate projections from CMIP6 models were integrated into the analysis.

The K-Means clustering technique was utilized to classify observation wells into three distinct clusters: Jangeh, Barfabab, and Bureg. The RF algorithm was employed to identify the most relevant CMIP6 soil moisture models for predicting GWL under three future climate scenarios: SSP1-2.6, SSP2-4.5, and SSP5-8.5. The models were trained using 80% of the dataset, with the remaining 20% allocated for validation. Model performance was evaluated using Nash-Sutcliffe Efficiency (NSE), correlation coefficient (R), mean absolute error (MAE), and normalized root mean square error (NRMSE).

Results and Discussion:

During the observational period (1997–2014), all study regions exhibited a pronounced downward trend in GWL. The most significant decline was recorded in Barfabab, with an annual reduction of 1 meter, followed by Bureg (0.715 m/year) and Jangeh (0.59 m/year).

Under the SSP1-2.6 scenario, GWL is projected to continue its decline in the near future, with Bureg experiencing a substantial reduction (-0.21 m/year). In the mid-term period (2051–2075), Jangeh is anticipated to undergo the most pronounced decrease (-0.14 m/year). The SSP2-4.5 scenario suggests a significant long-term decline across all regions, with Bureg exhibiting the steepest decrease (-0.16 m/year).

Future projections under SSP5-8.5 indicate a notable GWL increase in Jangeh (3 to 3.5 meters) in the late 21st century (2076–2100). Conversely, under SSP1-2.6, Bureg is expected to experience the most substantial decline (3.5 to 4 meters) in spring and summer during the mid-21st century. The low-emission scenarios (SSP1-2.6 and SSP2-4.5) suggest a more stabilized GWL condition in the distant future.

The RF model exhibited high predictive accuracy, with an R-value of 0.97 and NSE ranging from 0.89 to 0.98. The NorESM2-MM model emerged as the most reliable climate model for GWL prediction, enhancing forecasting precision by up to 99.5%. The findings underscore the pivotal role of climate change in GWL depletion within the Eslamabad-e-Gharb plain. Even under the most optimistic climate scenario (SSP1-2.6), GWL is projected to decline further, highlighting the necessity of implementing sustainable water management strategies. The study reinforces that machine learning models, particularly RF, surpass traditional numerical models in GWL prediction.

The integration of K-Means clustering with RF enhanced model precision by selecting the most relevant climate predictors for each region. These results align with previous research, indicating that hybrid machine learning approaches significantly improve groundwater modeling. The exceptional predictive capability of RF supports its potential for future groundwater management applications.

Conclusion:

This study demonstrates that RF, when integrated with CMIP6 climate data, serves as an effective tool for predicting future GWL variations in the Eslamabad-e-Gharb plain. The findings indicate that during the observational period, Barfabab exhibited the most favorable GWL conditions (8.7–10.2 meters), whereas Bureg experienced the least favorable levels (15.5–17.3 meters). Water availability peaked in spring and reached its lowest levels in fall. Projections suggest that under SSP5-8.5, Jangeh will experience the highest GWL increase (3–3.5 meters) in fall (2076–2100), whereas SSP1-2.6 predicts the most severe decline in Bureg (3.5–4 meters) during spring and summer. The SSP1-2.6 and SSP2-4.5 scenarios suggest more stable GWL conditions over the long term.

Overall, GWL displayed a declining trend, with Barfabab experiencing the most substantial drop (1 meter per year). Under SSP1-2.6, GWL is projected to decline in Bureg (-0.21 m/year) in the near future and in Jangeh (-0.14 m/year) in the mid-future. Under SSP2-4.5, a significant long-term decline is anticipated across all regions, with Bureg experiencing the steepest reduction (-0.16 m/year). The RF model demonstrated outstanding performance (R = 0.97, NSE = 0.89–0.98), while the NorESM2-MM model significantly enhanced prediction accuracy up to 99.5%. These findings emphasize the critical role of advanced machine learning methodologies in groundwater resource management, providing a robust framework for future hydrological assessments and policy-making initiatives.

Author Contributions

Conceptualization, Kobra Soltani, Seyed Ehsan Fatemi and Jafar Masoompour Samakosh; methodology, Seyed Ehsan Fatemi and Jafar Masoompour Samakosh; software, Seyed Ehsan Fatemi and Kobra Soltani; validation, Jafar Masoompour Samakosh and Maryam Hafezparast Mavadat; analysis, Kobra Soltani and Seyed Ehsan Fatemi; investigation, Kobra Soltani and Seyed Ehsan Fatemi; resources, Kobra Soltani and Maryam Hafezparast Mavadat; writing—original draft preparation, Kobra Soltani;writing—review and editing, Jafar Masoompour Samakosh, Seyed Ehsan Fatemi and Maryam Hafezparast.

All authors have read and agreed to the published version of the manuscript.

Data Availability Statement

Data can be sent from the corresponding author by email upon request.

Acknowledgements

The authors would like to thank all participants of the present study.

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The author declares no conflict of interest.

Adib, M. N. M., & Harun, S. (2022). Metalearning approach coupled with CMIP6 multi-GCM for future monthly streamflow forecasting. Journal of Hydrologic Engineering, 27(6), 05022004.‏ https://doi.org/10.1061/(ASCE)HE.1943-5584.0002176
Akurugu, C. A. (2024). Identifying Drivers of Groundwater Level Fluctuations in the Casper Aquifer Near Cheyenne, WY, Using Random Forest Model (Master's thesis, University of Wyoming).‏
Alamsyah, N., Budiman, B., Yoga, T. P., & Alamsyah, R. Y. R. (2024). Comparison linear regression and random forest models for prediction of underground drought levels in forest  fires. Jurnal Techno Nusa Mandiri, 21(2), 81-86.‏ https://doi.org/10.33480/techno.v21i2.5237
Almasi, A., Fatemi, S. E., & Eghbalzadeh, A. (2024). The prediction of monthly rainfall in Kermanshah Synoptic Station under the social-economic scenarios of the sixth climate change report. Advanced Technologies in Water Efficiency, 4(1), 40-64. https://doi.org/10.22126/atwe.2024.10245.1097 (In Persian)
Amnuaylojaroen, T. (2023). Advancements in downscaling global climate model temperature data in southeast asia: a machine learning approach. Forecasting, 6(1), 1-17.‏
Araghi, A., Martinez, C. J., Adamowski, J., & Olesen, J.E. (2018). Spatiotemporal variations of aridity in Iran using high‐resolution gridded data. International Journal of Climatology, 38 (6), 2701-2717. https://doi.org/10.1002/joc.5454
Atabati, A. & Adab, H. (2022). Evaluation of machine learning methods in spatial downscaling of average annual land surface temperature and air temperature. Journal of Natural Environment, 75(4), 551-569. https://doi.org/.22059/jne.2022.340875.2416 (In Persian).
Bagherabadi, Rasoul. (2022). Investigation of meteorological drought Eslamabad-e Gharb using of draught indices. Water Engineering, 10 (2), 136_148 (In Persian).
Bagheri-Khanghahi, M., Jaribi, A. H., Kamali, M. I., & Zamani, F. (2025). Forecasting Rainfall in Different Climatic Regions of Iran Using the LARS WG7 Climate Model. Water Resources and Climate Change‏, 10.22091/wrcc.2025.11744.1008 (In Persian)
Bochenek, B., & Ustrnul, Z. (2022). Machine learning in weather prediction and climate analyses—applications and perspectives. Atmosphere, 13(2), 180.‏ https://doi.org/10.3390/atmos13020180
Bogireddy, S. R., & Murari, H. (2024, September). Enhancing crop yield prediction through random forest classifier: A comprehensive approach. In 2024 5th International Conference on Smart Electronics and Communication (ICOSEC) (pp. 1663-1668). IEEE.‏ http://dx.doi.org/10.1109/ICOSEC61587.2024.10722249
Boo, K. B. W., El-Shafie, A., Othman, F., Khan, M. M. H., Birima, A. H., & Ahmed, A. N. (2024). Groundwater level forecasting with machine learning models: A review. Water Research, 252, 121249.‏ https://doi.org/10.1016/j.watres.2024.121249
Darabi Cheghabaleki, S., Fatemi, S. E., & Hafezparast Mavadat, M. (2024). Enhancing spatial streamflow prediction through machine learning algorithms and advanced strategies. Applied Water Science, 14(6), 110.‏ https://doi.org/10.1007/s13201-024-02154-x
Das, S., Datta, P., Sharma, D., & Goswami, K. (2022). Trends in temperature, precipitation, potential evapotranspiration, and water availability across the teesta river basin under 1.5 and 2 C temperature rise scenarios of CMIP6. Atmosphere, 13(6), 941. https://doi.org/10.3390/atmos13060941.
Eghrari, Z., Delavar, M. R., Zare, M., Mousavi, M., Nazari, B., & Ghaffarian, S. (2023). Groundwater level prediction using deep recurrent neural networks and uncertainty assessment. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 10, 493-500.‏ https://doi.org/10.5194/isprs-annals-X-1-W1-2023-493-2023
Esmaeili, S. & Mojarrad, F. (2025). Investigating the stability of the groundwater level in the Eslamabad-e Gharb plain (Kermanshah province) and evaluating the future situation with atmospheric general circulation models. Hydrogeomorphology, 11(41), 134-115. https://doi.org/10.22034/hyd.2024.62351.1747 (In Persian)
Fang, W., Ren, K., Liu, T., Shang, J., Jia, S., Jiang, X., & Zhang, J. (2024). An evaluation of random forest based input variable selection methods for one month ahead streamflow forecasting. Scientific Reports, 14(1), 29766.‏ https://doi.org/10.1038/s41598-024-81502-y
Fatemi, S. , Ghobadian, R. and Pakbin, M. (2018). Forecasting Groundwater Depth Using Time series Spectral Analysis. Water and Soil Science, 28(1), 145-158. https://water-soil.tabrizu.ac.ir/article_7600.html (In Persian)
Fatemi, S. E., & Parvini, H. (2022). The impact assessments of the ACF shape on time series forecasting by the ANFIS model. Neural Computing and Applications, 34(15), 12723-12736.‏ https://doi.org/10.1007/s00521-022-07140-5
Gaber, K. Sh., & Singla, M. K. (2025). Predictive analysis of groundwater resources using Random Forest regression. Journal of Artificial Intelligence and Metaheuristics, 9(1), 11–19. https://doi.org/10.54216/JAIM.090102
Gidden, M. J., Riahi, K., Smith, S. J., Fujimori, S., Luderer, G., Kriegler, E., van Vuuren, D. P., van den Berg, M., Feng, L., Klein, D., Calvin, K., Doelman, J. C., Frank, S., Fricko, O., Harmsen, M., Hasegawa, T., Havlik, P., Hilaire, J., Hoesly, R., Horing, J., Popp, A., Stehfest, E., & Takahashi, K. (2019). Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geoscientific model development, 12(4), 1443-1475. https://doi.org/10.5194/gmd-12-1443-2019
Gorgani, S., Bafkar, A., & Fatemi, S. E. (2017). Prediction of groundwater pollution potential using the DRASTIC index and annual time series analysis (case study: plain Mahidasht Kermanshah).‏ Journal of Health and Environment, 10 (3), 317-328. http://ijhe.tums.ac.ir/article-1-5962-en.pdf (In Persian)
Gupta, S. K., Sahoo, S., Sahoo, B. B., Srivastava, P. K., Pateriya, B., & Santosh, D. T. (2024). Prediction of groundwater level changes based on machine learning technique in highly groundwater irrigated alluvial aquifers of south-central Punjab, India. Physics and Chemistry of the Earth, 135, 103603.‏ https://doi.org/10.1016/j.pce.2024.103603
Irmanda, H. N., Ermatita, E., bin Awang, M. K., & Adrezo, M. (2024). Enhancing Weather Prediction Models through the Application of Random Forest Method and Chi-Square Feature Selection. International Journal on Informatics Visualization, 8(3-2), 1506-1514.‏ http://dx.doi.org/10.62527/joiv.8.3.2356
Islam, M. S. (2023). Groundwater: Sources, functions, and quality. In Hydrogeochemical evaluation and groundwater quality (pp. 17-36). Cham: Springer Nature Switzerland.‏ https://doi.org/10.1007/978-3-031-44304-6-2.
Jin, H., Jiang, W., Chen, M., Li, M., Bakar, K. S., & Shao, Q. (2023). Downscaling long lead-time daily rainfall ensemble forecasts through deep learning. Stochastic Environmental Research and Risk Assessment, 37(8), 3185-3203.‏ https://doi.org/10.1007/s00477-023-02444-x
Kardan Moghaddam, H., Ghordoyee Milan, S., Kayhomayoon, Z., Rahimzadeh kivi, Z., & Arya Azar, N. (2021). The prediction of aquifer groundwater level based on spatial clustering approach using machine learning. Environmental Monitoring and Assessment, 193(4), 173.‏ https://doi.org/10.1007/s10661-021-08961-y
Kariminezhad, H., Fatemi, S. E., & Hafezparast Mavadat, M. (2023). Reservoir inflow Classification of Jamishan reservoir by K-means method and its effect on stochastic dynamic programming. Advanced Technologies in Water Efficiency, 3(2), 15-32. https://doi.org/10.22126/atwe.2023.9111.1052 (In Persian)
Kayhomayoon, Z., Ghordoyee Milan, S., Arya Azar, N., & Kardan Moghaddam, H. (2021). A new approach for regional groundwater level simulation: clustering, simulation, and optimization. Natural Resources Research, 30, 4165-4185.‏ https://doi.org/10.1007/s11053-021-09913-6
Kayhomayoon, Z., Ghordoyee-Milan, S., Jaafari, A., Arya-Azar, N., Melesse, A. M., & Moghaddam, H. K. (2022). How does a combination of numerical modeling, clustering, artificial intelligence, and evolutionary algorithms perform to predict regional groundwater levels? Computers and Electronics in Agriculture, 203, 107482.‏ https://doi.org/10.1016/j.compag.2022.107482
Komasi, M. & Dalvand, R. (2025). Evaluation of nonparametric decision tree models for predicting scour depth of bridges. Water Resources and Climate Change, 1(1), 40-50. 10.22091/wrcc.2025.11363.1005 (In Persian)
Liu, B., Sun, Y., & Gao, L. (2024). Enhancing Groundwater Recharge Prediction: A Feature Selection‐Based Deep Forest Model With Bayesian Optimisation. Hydrological Processes, 38(10), e15309.‏ https://doi.org/10.1002/hyp.15309
Mannik, M., Bikse, J., & Karro, E. (2024, April). Groundwater vulnerability and pollution risk assessment in the Estonian-Latvian transboundary area. In EGU General Assembly Conference Abstracts (p. 16280).‏ https://doi.org/10.5194/egusphere-egu24-16280
Mendoza Paz, S., Villazón Gómez, M. F., & Willems, P. (2024). Adapting to Climate Change with Machine Learning: The Robustness of Downscaled Precipitation in Local Impact Analysis. Water, 16(21), 3070.‏ https://doi.org/10.3390/w16213070
Miao, Y., & Xu, Y. (2024, June). Random Forest-Based Analysis of Variability in Feature Impacts. In 2024 IEEE 2nd International Conference on Image Processing and Computer Applications (ICIPCA) (pp. 1130-1135). IEEE.‏ https://doi.org/10.1109/ICIPCA61593.2024.10708791
Moeeni, H., Bonakdari, H., & Fatemi, S. E. (2017). Stochastic model stationarization by eliminating the periodic term and its effect on time series prediction. Journal of hydrology, 547, 348-364.‏ https://doi.org/10.1016/j.jhydrol.2017.02.012
Mohammed, K. S., Shabanlou, S., Rajabi, A., Yosefvand, F., & Izadbakhsh, M. A. (2023). Prediction of groundwater level fluctuations using artificial intelligence-based models and GMS. Applied Water Science, 13(2), 54.‏ https://doi.org/10.1007/s13201-022-01861-7
Norouzi, H. & Nadiri, A. (2018). Groundwater Level Prediction of Boukan Plain using Fuzzy Logic, Random Forest and Neural Network Models. Journal of Range and Watershed Managment, 71(3), 829-845. doi: https://doi.org/10.22059/jrwm.2018.68924 (In Persian)
O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M, (2016), The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev., 9, 3461–3482. https://doi.org/10.5194/gmd-9-3461-2016
Panahi, M., Misaqi, F. and Ghanbari, F. (2017). Determining of trend variation in quality parameters of Shabestar plain underground water. Environmental Sciences, 15(3), 19-38. https://envs.sbu.ac.ir/article_97862.html (In Persian)
Pang, B., Yue, J., Zhao, G., & Xu, Z. (2017). Statistical downscaling of temperature with the random forest model. Advances in Meteorology, 2017(1), 7265178.‏ https://doi.org/10.1155/2017/7265178
Pourmorad, S., Kabolizade, M., & Dimuccio, L. A. (2024). Artificial Intelligence Advancements for Accurate Groundwater Level Modelling: An Updated Synthesis and Review. Applied Sciences, 14(16), 7358.‏ https://doi.org/10.3390/app14167358
Poursalehi, F.  KhasheiSiuki, A. & Hashemi, S. R. (2021). Investigating the performance of random forest algorithm in predicting water table fluctuations Compared with two models of decision tree and artificial neural network (Case study: unconfined aquifer of Birjand plain). Journal of Ecohydrology, 8(4), 961-974. http://dx.doi.org/10.22059/ije.2022.327263.1526 (In Persian)
Rampal, N., Hobeichi, S., Gibson, P. B., Baño-Medina, J., Abramowitz, G., Beucler, T., González-Abad, J., Chapman, W., Harder, P., & Gutierrez, J. M. (2024). Enhancing regional climate downscaling through advances in machine learning. Artificial Intelligence for the Earth Systems, 3(2), 230066.‏ https://doi.org/10.1175/AIES-D-23-0066.1
Sakizadeh, M., Mohamed, M. M., & Klammler, H. (2019). Trend analysis and spatial prediction of groundwater levels using time series forecasting and a novel spatio-temporal method. Water Resources Management, 33, 1425-1437.‏ https://doi.org/10.1007/s11269-019-02208-9
Salman, H. A., Kalakech, A., & Steiti, A. (2024). Random forest algorithm overview. Babylonian Journal of Machine Learning, 2024, 69-79.‏ https://doi.org/10.58496/BJML/2024/007
Soltani, K., masoompour samakosh, J., Mojarrad, F., Hadi Pour, S. and Jalilian, A. (2023). Analysis of the Trend and Spatial Variation of Aridity in the Future Climate of Iran. Physical Geography Research, 55(2), 25-50. https://doi.org/10.22059/jphgr.2023.361339.1007777 (In Persian)
Tang, K., Zhu, H., & Ni, P. (2021). Spatial downscaling of land surface temperature over heterogeneous regions using random forest regression considering spatial features. Remote Sensing, 13(18), 3645.‏ https://doi.org/10.3390/rs13183645
Tang, T., Liu, T., & Gui, G. (2024). Forecasting precipitation and temperature evolution patterns under Climate Change using a Random Forest Approach with Seasonal Bias correction. Journal of Selected Topics in Applied Earth Observations and Remote Sensing.‏ 17, 12609-12621. https://doi.org/10.1109/JSTARS.2024.3425639
Teimoori, S., Olya, M. H., & Miller, C. J. (2023). Groundwater level monitoring network design with machine learning methods. Journal of Hydrology, 625, 130145.‏ https://doi.org/10.1016/j.jhydrol.2023.130145
Uc-Castillo, J. L., Marín-Celestino, A. E., Martínez-Cruz, D. A., Tuxpan-Vargas, J., & Ramos-Leal, J. A. (2023). A systematic review and meta-analysis of groundwater level forecasting with machine learning techniques: Current status and future directions. Environmental Modelling & Software, 168, 105788.‏ https://doi.org/10.1016/j.envsoft.2023.105788
Wang, P. (2024, December). Prediction of the Groundwater Levels Based on Random Forest Regression Algorithm. In 2024 IEEE 4th International Conference on Information Technology, Big Data and Artificial Intelligence, 4, 214-217. https://doi.org/10.1109/ICIBA62489.2024.10869277
Williams, S. A., Megdal, S. B., Zuniga-Teran, A. A., Quanrud, D. M., & Christopherson, G. (2024). Equity Assessment of Groundwater Vulnerability and Risk in Drinking Water Supplies in Arid Regions. Water (20734441), 16(23).‏ https://doi.org/10.3390/w16233520
Yang, R., Zhong, Y., Zhang, X., Maimaitituersun, A., & Ju, X. (2025). A Comparative Study of Downscaling Methods for Groundwater Based on GRACE Data Using RFR and GWR Models in Jiangsu Province, China. Remote Sensing, 17(3), 493.‏ https://doi.org/10.3390/rs17030493.