مدل‏سازی اثر سناریوهای اقلیمی بر موجودی کربن آلی خاک در رویشگاه طبیعی Halocnemum strobilaceum

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی طبیعت، دانشکده منابع طبیعی و محیط زیست، دانشگاه ملایر، ملایر، ایران.

2 استادیار گروه مرتع و آبخیزداری، دانشکده منابع طبیعی، دانشگاه ملایر، ملایر، ایران

3 گروه احیاء مناطق خشک و کوهستانی دانشگاه تهران، تهران، ایران

چکیده

ترسیب کربن یکی از روش‌های کاهش مقدار دی‌اکسیدکربن اتمسفر و در نتیجه کاهش پیامدهای منفی تغییرات اقلیمی است. در این تحقیق به ارزیابی اولیه از میزان ذخایر کربن خاک در رویشگاه Halocnemum strobilaceum در کویر میقان اراک و تعیین اعتبار مدل Rothamsted Carbon Model (RothC) و همچنین بررسی دو سناریو اقلیمی آینده (عدم وقوع تغییر اقلیم و وقوع تغییر اقلیم) در برآورد تغییرات موجودی کربن آلی خاک پرداخته شد. نمونه‌گیری در قالب طرح تصادفی-سیستماتیک با  استفاده از  48 نقطه در خاک سطحی انجام گرفت. برای ارزیابی کارایی مدل‏ از ضریب تبیین (R2)، ضریب همبستگی (r)، میانگین مربعات خطا (RMSE) و همچنین شاخص کارایی اجرای مدل (PE) استفاده شد. نتایج نشان داد که بیشترین و کمترین مقدار موجودی کربن آلی خاک در رویشگاه‌های این گیاه برای هر یک از سناریوهای فوق، به‌ترتیب با مقادیر 1687/19، 0824/20، 0802/20 مربوط به رویشگاه این گیاه در غرب کویر میقان و 7525/9، 2211/10، 22/10 تن بر هکتار در جنوب کویر میقان بود. همچنین نتایج بیانگر کاهش همه ذخایر فعال کربن بود، چنان‌که مخازن مواد گیاهی تجزیه پذیر، مواد گیاهی مقاوم، زیست‌توده میکروبی، مواد آلی هوموسی شده خاک به‌ترتیب معادل  167/14، 421/16، 976/13 و91/1 درصد نسبت به شرایط عدم وقوع تغییرات اقلیمی کاهش نشان خواهد داد. با توجه به وضعیت شکننده اکوسیستم کویر میقان و سایر پلایاهای ایران، درصورتی‌که ارزش اقتصادی (ارزش اقتصادی هر تن کربن حداقل 50 دلار آمریکا) و زیست‌محیطی ترسیب کربن (کاهش تأثیرات گرم شدن زمین و ...) به جمع مزایا و خدمات این اکوسیستم‌ها‌ افزوده گردد، لزوم حفاظت از این اکوسیستم‌ها آشکارتر می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Predicting Soil Organic Carbon as Affected by Climate Change Scenarios in the Natural Habitat of Halocnemum strobilaceum

نویسندگان [English]

  • Malihe Akbari Bezcheloei 1
  • Behnaz Attaeian 2
  • Bijan Azad 3
1 Department of Natural Engineering, Malayer University, Malayer, Iran
2 Assistant prof, Department of Rangelands and watershed management, Malayer University, Malayer, Iran
3 Department of Arid and Mountainous Areas Revitalization, University of Tehran, Tehran, Iran
چکیده [English]

Carbon sequestration is one of the ways to reduce the amount of carbon dioxide in the atmosphere and thereby reduce the negative consequences of climate change. In this research, the initial evaluation of the amount of carbon reserves in Halocnemum strobilaceum habitat in Mighan Arak desert and determining the validity of Rothamsted Carbon Model (RothC) as well as investigating future two climate scenarios (Absence and onset of climate change) in estimating the changes in soil organic carbon stock were done. Sampling was done in the form of random-systematic design using 48 points in the topsoil. To evaluate the efficiency of the model, the coefficient of explanation (R2), correlation coefficient (r), root mean square error (RMSE) and also the efficiency index of the model implementation (PE) were used. The results showed that the highest and lowest amount of soil organic carbon in the habitats of this plant for each of the above scenarios, respectively, with the values of 19/1687, 20/0824, 20/0802 corresponding to the habitat of this plant in the west of Miqan desert and 9/7525, 10/2211, 10/22 tons per hectare in the south of Meyqan desert. Also, the results showed the reduction of all active carbon reserves, such as the reservoirs of degradable plant material, resistant plant material, microbial biomass, and soil humus organic matter equivalent to 14/167, 16/421, 13/976 and 1/91% respectively. It will decrease compared to the conditions of non-occurrence of climate change. Considering the fragile state of the Miqan desert ecosystem and other playas of Iran, if the economic value (the economic value of each ton of carbon is at least 50 US dollars) and the environmental value of carbon deposition (reducing the effects of global warming, etc.) add to the sum of the benefits and services of these ecosystems is done, the need to protect these ecosystems becomes more obvious.

کلیدواژه‌ها [English]

  • Carbon sequestration
  • Meighan Kavir
  • RothC model
  • Halocnemum strobilaceum

EXTENDED ABSTRACT

 

Introduction

Atmospheric CO₂ mitigation through soil carbon sequestration is an essential strategy for combating climate change, particularly in arid and semi‑arid ecosystems where organic inputs are limited. Halocnemum strobilaceum, a salt‑tolerant halophyte dominating the edges of the Mighan Desert playa (Arak, Iran), may contribute substantially to below‑ground carbon storage under saline, water‑scarce conditions. This study provides a preliminary quantification of soil organic carbon (SOC) beneath H. strobilaceum, evaluates the Rothamsted Carbon Model (RothC‑26.3) for this environment, and projects SOC dynamics under two contrasting climate scenarios through 2050. By validating RothC in this context, we aim to establish a robust framework for long‑term desert ecosystem carbon monitoring.

Materials and Methods

Field sampling was carried out in summer 2023 using a random‑systematic design across four distinct H. strobilaceum stands (north, south, east, west) on the Mighan playa. At each of 48 sampling points, topsoil (0–25 cm) cores were collected, bulk density recorded in situ, and samples analyzed for texture (hydrometer), pH and electrical conductivity (1:2.5 soil:water), and organic C via Walkley–Black titration. SOC stocks (t ha⁻¹) were computed from percent C, bulk density, and sampling depth.

The RothC‑26.3 model was forced with monthly climate inputs (2005–2022: mean temperature, precipitation, potential evapotranspiration) and estimated plant‑residue inputs based on local biomass data. Two future scenarios were defined for 2023–2050:

No‑change: continuation of long‑term mean climate.

Climate‑change: –10.4 % precipitation and +17.7 % temperature relative to baseline (per Koocheki et al., 2007 projections).

Model calibration in inverse mode employed December 2012 SOC observations (n = 24). Performance metrics included coefficient of determination (R²), Pearson’s correlation (r), root‑mean‑square error (RMSE), and model efficiency index (PE). Measured versus simulated SOC time series were compared using Excel and SPSS v21.0.

Results and Discussion

RothC exhibited excellent agreement with field observations: R² = 0.99, r = 0.98, RMSE = 0.32 t ha⁻¹, PE = 0.99, indicating negligible bias and high predictive reliability. Baseline (Dec 2023) SOC stocks ranged from 9.8 t ha⁻¹ in the south stand to 20.1 t ha⁻¹ in the west. Under the no‑change scenario, SOC increased modestly by 1.8–2.3 % across all sites by 2050, reflecting steady carbon inputs. Conversely, the climate‑change scenario projected SOC declines of 4.6–5.6 %, with the greatest loss in the northern stand (–5.6 %) and the smallest in the eastern stand (–4.6 %) by Dec 2050. Model outputs also forecast a 7–9 % increase in cumulative soil CO₂ efflux under warming and drying, amplifying carbon losses. These divergent trajectories underscore the sensitivity of desert SOC pools to altered precipitation and temperature regimes.

Conclusion

Our findings demonstrate that the RothC‑26.3 model is robust for simulating SOC in saline, semi‑arid soils and can reliably predict future carbon dynamics under climate change. Projected warming and reduced rainfall may drive a 4–6 % SOC loss and elevated CO₂ emissions by mid‑century beneath H. strobilaceum. To safeguard this ecosystem service, adaptive management—such as controlled grazing, maintenance of shallow water tables, and halophyte stand conservation—is recommended. Future work should involve the establishment of long‑term monitoring stations and experimental plots to refine residue input estimates, validate model projections, and assess the efficacy of management interventions in stabilizing desert SOC stocks.

Author Contributions

Conceptualization, Behnaz Attaeian; Methodology, Behnaz Attaeian and Maliha Akbari Bezcheloi, Bijan Azad; Software and modeling, Bijan Azad, Maliha Akbari Bezcheloi; Validation, Behnaz Attaeian, Bijan Azad; Formal analysis, Maliha Akbari Bezcheloi and Bijan Azad; Investigation, Maliha Akbari Bezcheloi; Data curation, Maliha Akbari Bezcheloi; Writing—original draft preparation, Maliha Akbari Bezcheloi; Writing—review and editing, Behnaz Attaeian; Supervision, Behnaz Attaeian; Project administration, Behnaz Attaeian. All authors have read and agreed to the published version of the manuscript.

Data Availability Statement

The raw data generated and analyzed during this study are available from the corresponding author, Behnaz Attaeian, upon reasonable request and pending permission from the co‑authors.

Acknowledgments

The authors gratefully acknowledge the support of Malayer University, which provided facilities and guidance essential for Maliha Akbari Bezcheloi’s master’s research project.

Ethical Considerations

Not applicable in the study.

Conflict of Interest

The authors declare no conflict of interest.

Akbari, N. (2012). An autecological study of the marsh halophyte Halocnemum in the Mighan Desert region, Arak (Master’s thesis). Faculty of Agriculture and Natural Resources, Islamic Azad University, Arak Branch. (In Persian)
Alai‑Taleghani, M. (2009). Geomorphology of Iran (6th ed., 360 pp.). Qomes Publishing. (In Persian)
Azad, B., Afzali, S.F.,  & Francaviglia, R. (2020). Simulating soil CO2 emissions under present and climate change conditions in selected vegetation covers of a semiarid region. International Journal of Environmental Science and and Technology. 17(5), 3087-3098. (In Persian).
Azad, B., & Afzali, S. F. (2022). Modelling the impacts of climate change on the soil CO2 emissions in arid rangelands (Southern Iran). Desert Ecosystem Engineering7(20), 71-87. (In Persian).
Bagherifam, S., Delavar, M. A., Keshavarz, P., & Karami, P. (2021). Validation of the RothC model by examining long‑term dynamics of soil organic carbon stocks in agricultural lands. Proceedings of the 17th Iranian Soil Science Congress and 4th National Conference on On‑Farm Water Management: “Wise Soil Revival and Wise Water Governance,” Karaj, Iran. (In Persian)
Bagherifam, S. , Delavar, M. A. , Keshavarz, P., & Karami, P. (2022). Application of the RothC Model in Simulating Effect of Climate Change on CO2 Emissions and Soil Organic Carbon Stocks in Semi-arid Climate of Khorasan-e-Razavi. Water and Soil, 36(5), 611-628. (In Persian(
Blake, G. R., & Hartge, K. H. (1986). Bulk density, In: Methods of Soil Analysis. Part I. Physical and Mineralogical Methods, Klute, A. (Ed.). Soil Science Society of America Publication. 363-376.
Bouyoucos, G. J. 1962. Hydrometer method improved for making particle size analysis of soils. Agronomy Journal, 56, 464-465.
Carvalho, G.L.D., Maria, C.I., & Equardo de sa, M. (2016). Trees modify the dynamics of soil CO2 efflux in coffee agroforestry systems. Agriculture and Forest Meteorology, 224, 30-39.
Eghbalian, Z., Attaeian, B., & Parvizi, Y. (2023). Investigation of Soil Organic Carbon Changes and Validation of the Roth C Model to Estimate in Mountainous Areas. Journal of Natural Ecosystems of Iran, 4(14), 1-23. (In Persian).
Eller, B.H., and Bettany, J.R. 1995. Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Can. J. Soil Sci. 75: 529-538.
Farina, R., Marchetti, A., Francaviglia, R., Napoli, R., & Di Bene, C. (2017). Modeling regional soil C stocks and CO2 emissions under Mediterranean cropping systems and soil types. Agriculture, Ecosystems and Environment, 238, 128–141.
Fallahi, J. , Rezvani Moghaddam, P. , Nassiri Mahallati, M., & Behdani, M. A. (2013). Validation of RothC Model for Evaluation of Carbon Sequestration in a Restorated Ecosystem Under Two Different Climatic Scenarios. Water and Soil27(3), 656-668. (In Persian). 
Hameed, A., Hussain, S., Rasheed, A., Ahmed, M. Z., & Abbas, S. (2024). Exploring the Potentials of Halophytes in Addressing Climate Change-Related Issues: A Synthesis of Their Biological, Environmental, and Socioeconomic Aspects. World5(1), 36-57.
Hoseini, A. , Shahmoradi, A., & Abarsaji, G. (2007). An Investigation on the Presence Form of Halocnemum strobilaceum in Saline and Alkaline Rangelands of Northern Golestan Province. Iranian Journal of Range and Desert Research14(2), 110-123. (In Persian).  
Jebari, A., Álvaro-Fuentes, J., Pardo, G., Almagro, M., & Del Prado, A. (2021). Estimating soil organic carbon changes in managed temperate moist grasslands with RothC. PLoS One16(8), e0256219.
Jurakulov, B., Tagaev, I., Alikulov, B., Axanbayev, S., Akramov, I., & Ismailov, Z. (2023). Population of Halocnemum strobilaceum (Pall.) M. Bieb in a dry salt lake of the Central Kyzylkum. Plant Sci Today10(2), 170-177.
Koocheki, A. , Nasiri Mahalati, M., & Kamali, G. (2007). Climate indices of Iran under climate change. Iranian Journal of Field Crops Research, 5(1), 133-142. (In Persian). doi: 10.22067/gsc.v5i1.904.
Lal, R. (2013). Soil carbon management and climate change. Carbon Management, 4, 439-462.
Markazi Province Meteorological Department. (2023). Data analysis report and presentation of meteorological statistics and information. Arak Synoptic Station. (In Persian).  
Markazi Province Meteorological Department. (2024). Station network, summary of climatic information of Arak Synoptic Station. Accessed 10 Esfand 1403. (In Persian). https://www.markazimet.ir/uploads/station/arak.pdf.
Marasco, R., Mapelli, F., Rolli, E., Mosqueira, M.J., Fusi, M., Bariselli, P., Reddy, M., Cherif, A., Tsiamis, G., Borin, S., & Daffonchio, D. (2016). Salicornia strobilacea (synonym of Halocnemum strobilaceum) grown under different tidal regimes selects rhizosphere bacteria capable of promoting plant growth. Frontiers in Microbiology7, p.1286.
Mozafarian, V.; Ghahremaninejad, F.; Narimisa, S.; Jafary, E.; Kazempoor Owsalo, S.; Lotfi, E.; & Asadi, M. (2018). Flora of Iran (1st ed.). Tehran: Research Institute of Forests and Rangelands. (In Persian)
Muñoz-Rojas, M., Abd-Elmabod, S.K., Zavala, L.M., De la Rosa, D., & Jordán, A. (2017). Climate change impacts on soil organic carbon stocks of Mediterranean agricultural areas: a case study in Northern Egypt. Agriculture, Ecosystems and Environment, 238, 142-158.
Nemoto, R. (2010). Long-term soil carbon changes in different agricultural management systems under past and future climate (Doctoral dissertation, University of Bern).
Pauwels, J.M., Van Ranst, E., Verloo, M. & Mvondo, Z.A. (1992) Analysis Methods of Major Plants Elements. Pedology Laboratory Manual: Methods of Plants and Soil Analysis. Stock Management Equipment of Worms and Chemical Equipment. Publica Agricol. 28, AGCD, Brussels.
Rahim Forouzeh, M. (2010). Effect of exclusion on carbon sequestration potential of Halocnemum strobilaceum and Halostachys caspica (Case study: Gomishan rangelands), Journal of Watershed Research, 22(85), 22-33. (In Persian).
Rahman, M.M., Zimmer, M., Ahmed, I., Donato, D., Kanzaki, M., & Xu, M. (2021). Co-benefits of protecting mangroves for biodiversity conservation and carbon storage. Nature Communications, 121 (12), 1–9.
 Sebti, M., Khormali, F., Soltani, A., Eftekhari, K., ghanghermeh, A., & dordipour, E. (2023). The effect of climate change on soil organic carbon storage using the Roth C model in the agricultural lands of Golestan province. Agricultural Engineering, 45(4), 339-355. (In Persian)
Shpedt, A. A., Ligaeva, N. A., & Emelyanov, D. V. (2019, August). Transformation of soil and land resources of the Middle Siberia in the conditions of climatic changes. In IOP Conference Series: Earth and Environmental Science (Vol. 315, No. 5, p. 052051). IOP Publishing.
Shahsavari, P. , Delavar, M. A. , Karami, P. and Nabiollahi, K. (2022). Simulating soil organic carbon dynamics using RothC in grasslands range and croplands Saral Research Center Kurdistan Province. Iranian Journal of Soil and Water Research53(5), 971-992. (In Persian). doi: 10.22059/ijswr.2022.339220.669211
Soleimani, A., Hosseini, S.M., Massah Bavani, A., Jafari, M., & Francaviglia, R. (2017). Simulating soil organic carbon stock as affected by land cover change and climate change, Hyrcanian forests (northern Iran). Science of the Total Environment, 599–600, 1646–1657. (In Persian).
Taati, M., Ghanbarian, G. A., Safaeian, R., & Afzali, S. F. (2019). Comparative assessment of carbon sequestration capability in plant and soil of three dominant halophytic species, including Aeluropus littoralis, Halocnemum strobilaceum, and Seidlitzia rosmarinus in Fars Province. Ecopersia7(2), 69-77.
Tadiello, T., Perego, A., Valkama, E., Schillaci, C. and Acutis, M., 2022. Computation of total soil organic carbon stock and its standard deviation from layered soils. MethodsX9, p.101662.
Venkatesh, G., Gopinath, K. A., Reddy, K. S., Reddy, B. S., Prabhakar, M., Srinivasarao, C., & Singh, V. K. (2022). Characterization of Biochar Derived from Crop Residues for Soil Amendment, Carbon Sequestration and Energy Use, 14, 2295.
Walkley, A., & Black, I. A. (1934). An examination of the Degtareff method for detwrmining soil organic matter, and a proposed modification of the choromic acid titration method. Soil Science,  37, 29-38.
Wiltshire, S., Grobe, S., & Beckage, B. (2023). A Historically Driven Spinup Procedure for Soil Carbon Modeling. Soil Systems7(2), 35.
Yadav, V., & Malanson, G. (2008). Spatially explicit historical land use land cover and soil organic carbon transformations in Southern Illinois. Agriculture, Ecosystems and Environment, 123, 280-292.