اثر شوری، کود فسفر و کشت مخلوط گندم با خلر و ماشک بر فسفر قابل‌جذب و شکل‌های فسفر معدنی در یک خاک شن لومی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران

2 گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه تبریز

3 گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران.

4 بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی آذربایجان غربی، سازمان تحقیقات، آموزش و ترویج کشاورزی، ارومیه، ایران؛

10.22059/ijswr.2024.380118.669770

چکیده

در این پژوهش، دو آزمایش جداگانه هر یک به‌صورت فاکتوریل و در قالب طرح پایه کاملاً تصادفی و با سه تکرار انجام شد. در آزمایش اول، اثر کشت، شوری و کود فسفر بر Olsen-P و شکل‌های فسفر معدنی با سه عامل نوع کشت در شش سطح (بدون کشت، تک‌کشتی گندم، تک‌کشتی خلر، تک‌کشتی ماشک، کشت مخلوط گندم-خلر، کشت مخلوط گندم-ماشک)، کود فسفر در دو سطح (صفر و 80 میلی‌گرم بر کیلوگرم) و شوری خاک (ECe) در دو سطح (75/0 و 5/7 دسی‌زیمنس بر متر) بررسی شد. آزمایش دوم برای بررسی اثر زمان، شوری و کود فسفر بر Olsen-P و شکل‌های فسفر معدنی در شرایط بدون کشت با سه عامل زمان در دو سطح (صفر و 90 روز) و کود فسفر و شوری (با همان سطوح آزمایش اول) انجام شد. نتایج نشان داد که کشت گیاهان گندم، خلر و ماشک در هر دو شرایط تک‌کشتی و کشت مخلوط، Olsen-P، NH4F-P، NaOH-P، H2SO4-P و مجموع شکل‌های فسفر خاک را کاهش داد. در شرایط با کود فسفر، Available-P در خاک ریزوسفر بیشتر از خاک توده و در کشت مخلوط بیشتر از تک‌کشتی بود. 90 روز پس از مصرف کود فسفر، شوری سدیم کلرید در خاک، NH4Cl-P، NH4F-P و NaOH-P را کاهش و Olsen-P و H2SO4-P را افزایش داد. مسن شدن پس از مصرف کود فسفر، NH4Cl-P و Olsen-P  را کاهش و NH4F-P، NaOH-P و H2SO4-P را افزایش داد. در شرایط با کود فسفر، عصاره‌گیر Olsen ممکن است مقدار Available-P گندم، خلر و ماشک را در شرایط تک‌کشتی و کشت مخلوط کمتر برآورد نماید. کشت مخلوط گندم-خلر و گندم-ماشک و مصرف 80 میلی‌گرم فسفر بر کیلوگرم خاک در شرایط مشابه می‌تواند توصیه شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effects of salinity, phosphorus fertilizer, and intercropping of wheat with lathyrus, and vetch on available-P and inorganic P fractions in a loamy sand soil

نویسندگان [English]

  • Maryam Alizadeh 1
  • Nosratollah Najafi 2
  • Shahin Oustan 3
  • Aziz Majidi 4
1 Soil Science Department, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
2 Soil Science Depertment, College of Agriculture, University of Tabriz , Tabriz, Iran
3 Soil Science Department, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
4 Soil and Water Research Dept., West Azerbaijan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization, Urmia, Iran
چکیده [English]

In this research, two separate experiments were carried out as factorial on the basis of completely randomized design with three replications. In the first experiment, the effects of cultivation, salinity, and phosphorus (P) fertilizer on available-P and inorganic P fractions were investigated with three factors of cultivation type at six levels (No cultivation, wheat monoculture, lathyrus monoculture, vetch monoculture, wheat-Lathyrus intercropping, wheat-vetch intercropping), P fertilizer at two levels (zero and 80 mg P/kg) and soil salinity (ECe) at two levels (0.75 and 7.5 dS/m) under greenhouse conditions. The second experiment was conducted to investigate the effects of ageing, salinity, and P fertilizer on Olsen-P and inorganic P fractions with three factors of time at two levels (zero and 90 days), P at two levels (zero and 80 mg P/kg), and ECe at two levels (0.75 and 7.5 dS/m) under laboratory conditions. Results showed that the cultivation of wheat, lathyrus, and vetch in both monoculture and intercropping conditions decreased Olsen-P, NH4F-P, NaOH-P, H2SO4-P, and sum of P fractions. Under P using conditions, available-P in the rhizosphere soil was more than the one in bulk soil and in intercroping it was more than the one in monoculture. In 90 days after P using, NaCl salinity decreased NH4Cl-P, NH4F-P, and NaOH-P while increased Olsen-P and H2SO4-P compared to non-saline conditions. Aging after P using decreased NH4Cl-P and Olsen-P and increased NH4F-P, NaOH-P, and H2SO4-P. Under P using conditions, Olsen extractant may underestimate soil P availablity for wheat, lathyrus, and vetch plants at both monoculture and intercropping conditions. Generally, intercropping of wheat-Lathyrus and wheat-vetch and using 80 mg P fertilizer per kg of soil can be recommedded under similar conditions.

کلیدواژه‌ها [English]

  • Ageing
  • Bioavailability
  • Phosphorus fractionation
  • Plant cultivation
  • Soil salinization

EXTENDED ABSTRACT

Introduction

The use of phosphorus (P) chemical fertilizers has increased as a result of the world's growing population and rising food demand. The world's non-renewable supply of phosphate rock, which is used to make P fertilizers, is expected to decrease due to this trend. Therefore, this research was conducted to investigate the effects of salinity, plant cultivation, cultivation method (monoculture and mixed cropping), P fertilizer, and the passage of time on the inorganic P forms and plant available-P. It is expected that mixed cropping can reduce the application of P fertilizers in both saline and non-saline conditions and improve the quality and quantity of agricultural crops.

Methodology

In this research, two separate experiments were carried out as factorial on the basis of completely randomized design with three replications. In the first experiment, the effects of cultivation, salinity, and P fertilizer on available-P and inorganic P forms were investigated with three factors of cultivation type at six levels (without cultivation, monoculture of wheat (Triticum aestivum L.), monoculture of lathyrus (Lathyrus sativus L.), monoculture of vetch (Vicia sativa L.), wheat-Lathyrus intercropping, and wheat-vetch intercropping), P fertilizer at two levels (zero and 80 mg P per kg soil as KH2PO4) and salinity of soil saturated extract (ECe) at two levels (0.75 and 7.5 dS/m as NaCl) under greenhouse conditions. The second experiment was conducted to investigate the effects of ageing, salinity, and P fertilizer on Olsen-P and inorganic P forms under uncultivated conditions with three factors of time at two levels (zero and 90 days) and P fertilizer and salinity (at the same levels of the first experiment). At the end of the growth period, the plants were harvested and the soil samples were immediately taken from the cultivated and uncultivated pots and the Olsen-P and inorganic P forms were determined using the Olsen and Kuo methods, repevtively.

Results and Discussions

The results showed that the effects of salinity, cultivation, P fertilizer, and ageing on Olsen-P and all inorganic P fractions were significant. Cultivation of wheat, lathyrus, and vetch plants in both monoculture and intercropping conditions decreased Olsen-P, NH4F-P, NaOH-P, H2SO4-P, and sum of P fractions compared to the without cultivation at both with and without P fertilizer conditions. However, in P fertilized conditions, the sum of Olsen-P and palnt P uptake (Olsen-P+Puptake) uner all three plants cultivation conditions (monoculture and intercropping) was more than the uncultivated pots, which indicates an increase in the bioavailability of P in the rhizosphere soil of these plants. In uncultivated conditions and 90 days after P fertilizer using, NaCl salinity decreased the amount of NH4Cl-P, NH4F-P, and NaOH-P while increased Olsen-P and H2SO4-P compared to the non-saline conditions. In uncultivated conditions and no-application of P fertilizer, NaCl salinity had no significant effect on Olsen-P and all inorganic P fractions. Immediately after P fertilizer application in the soil, Olsen-P, NH4Cl-P, and sum of P fractions were increased, while NH4F-P, NaOH-P, and H2SO4-P did not change significantly. In 90 days after using P fertilizer in the soil compared to the first day, NH4Cl-P and Olsen-P were decreased while NH4F-P, NaOH-P, and H2SO4-P were increased.

Conclusion

The results showed that under P fertilizer application conditions, the Olsen extractant may underestimate the amount of available-P for wheat, lathyrus, and vetch plants in the studied soil at both cultivation methods (monoculture and intercropping). Soil salinization by NaCl salt had different effects on Olsen-P and all inorganic P fractions under with and without P application conditions. Under P using conditions, available-P was more in the rhizosphere soil (cultivated) than the bulk soil (uncultivated) and in the intercroping than the monoculture. In general, in both saline and non-saline conditions, the mixed culture of wheat- Lathyrus and wheat-vetch and application of P fertilizer at the rate of 80 mg P/kg are recommended at the same conditions. 

Author Contributions

Conceptualization, M.A. and N.N.; methodology, M.A. and N.N.; software, M.M. and N.N.; validation, M.A., N.N., S.O., and A.M.; formal analysis, M.M. and N.N.; investigation, M.A.; resources, M.M. and N.N.; data curation, M.A. and N.N.; writing—original draft preparation, M.A. and N.N.; writing–review and editing, N.N., S.O., and A.M.; visualization, M.A. and N.N.; supervision, N.N.; project administration, N.N.; funding acquisition, N.N. All authors have read and agreed to the published version of the manuscript.

Data Availability Statement

Data is available on reasonable request from the authors.

Acknowledgements

This paper is published as a part of a Ph.D. dissertation supported by the Vice Chancellor for Research and Technology of the University of Tabriz, Iran. The authors are thankful to the University of Tabriz for financial supports.

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The authors declare no conflict of interest.

Akhtar, M., & Alam, S.M. (2001). Effect of incubation period on phosphate sorption from two P sources. Journal of Biological Sciences, 1(3), 124–125.
Allison, L.E., & Moodie, C.D. (1965). Carbonates. Pp. 1379-1398.  In: Black C.A. (Ed.). Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. Monograph No. 9, ASA, SSSA, Madison, WI, USA.
Amrani, M., Westfall, D.G., & Moughli, L. (1999). Evaluation of residual and cumulative phosphorus effects in contrasted Moroccan calcareous soils. Nutrient Cycling in Agroecosystems, 55, 231–238.
Appelhans, S.C., Novelli, L.E., Melchiori, R.J.M., Gutiérrez Boem, F.H., & Caviglia, O.P. (2021). Crop sequence and P fertilization effects on soil P fractions under no-tillage. Nutrient Cycling in Agroecosystems, 120(3), 275–288.
Azadi, A., Baghernejad, M., Karimian, N.A., & Abtahi, S.A. (2015). Inorganic phosphorus fractions and their relationships with soil characteristics of selected Calcareous soils of Fars province. Water and Soil, 29(5), 1288–1296. In Persian with English abstract.
Azimzadeh, Y., Najafi, N., Reyhanitabar, A., Oustan, S., & Khataee, A. (2020). Effects of phosphate loaded LDH-biochar/hydrochar on maize dry matter and P uptake in a calcareous soil. Archives of Agronomy and Soil Science, 67(12), 1649–1664.
Bagayoko, M., Alvey, S., Neumann, G., & Bürkert, A. (2000). Root-induced increases in soil pH and nutrient availability to field-grown cereals and legumes on acid sandy soils of Sudano-Sahelian West Africa. Plant and Soil, 225, 117–127.
Barrow, N.J., & Ellis, A.S. (1986). Testing a mechanistic model. V. The points of zero salt effect for phosphate retention, for zinc retention and for acid/alkali titration of a soil. Journal of Soil Science, 37(2), 303–310.
Betencourt, E., Duputel, M., Colomb, B., Desclaux, D., & Hinsinger, P. (2012). Intercropping promotes the ability of durum wheat and chickpea to increase rhizosphere phosphorus availability in a low P soil. Soil Biology and Biochemistry, 46, 181–190.
 Boschetti, N.G., Quintero, C.E., & Giuffre, L. (2009). Phosphorus fractions of soils under Lotus corniculatus as affected by different phosphorus fertilizers. Biology and Fertility of Soils, 45, 379–384.
Bouray, M., Moir, J.L., Lehto, N.J., Condron, L.M., Touhami, D., & Hummel, C. (2021). Soil pH effects on phosphorus mobilization in the rhizosphere of Lupinus angustifoliusPlant and Soil, 469, 387–407.
Chang, S.C., & Juo, S.R. (1963). Available phosphorus in relation to forms of phosphates in soils. Soil Science, 95(2), 91–96.
Chen, C.R., Condron, L.M., Davis, M.R., & Sherlock, R.R. (2002). Phosphorus dynamics in the rhizosphere of perennial ryegrass (Lolium perenne L.) and radiata pine (Pinus radiata D. Don.). Soil Biology and Biochemistry, 34(4), 487–499.
Chorom, M., & Rengasamy, P. (1997). Carbonate chemistry, pH, and physical properties of an alkaline sodic soil as affected by various amendments. Soil Research35(1), 149–162.
Cordell, D., Drangert, J.O., & White, S. (2009). The story of phosphorus: global food security and food for thought. Global Environmental Change19(2), 292–305.
Dey, G., Banerjee, P., Sharma, R.K., Maity, J.P., Etesami, H., Shaw, A.K., & Chen, C.Y. (2021). Management of phosphorus in salinity-stressed agriculture for sustainable crop production by salt-tolerant phosphate-solubilizing bacteria—A review. Agronomy, 11(8), 1552.
Eichler-Löbermann, B., Bachmann, S., Busch, S., Schiemenz, K., Krey, T., Pfahler, V., & Uptmoor, R. (2016). Management options for an efficient utilization of phosphorus in agroecosystems. Phosphorus in Agriculture: 100% zero, 179–193.
Gee, G.W., & Or, D. (2002). Particle size analysis. Pp. 201–214. In: Dane J.H. and Topp G.C. (Eds), Methods of Soil Analysis. Part 4. Physical Methods. SSSA Book Series No. 5, Madison, WI. USA.
Ghosh, P.K., Tripathi, A.K., Bandyopadhyay, K.K., & Manna, M.C. (2009). Assessment of nutrient competition and nutrient requirement in soybean/sorghum intercropping system. European Journal of Agronomy, 31(1), 43–50.
Grattan, S.R., & Grieve, C.M. (1998). Salinity–mineral nutrient relations in horticultural crops. Scientia Horticulturae, 78(1-4), 127–157.
Hatami, H., Parvizi, H., Parnian, A., & Ranjbar, G. (2024). Changes in soil-phosphorus fractions as affected by municipal sewage sludge and triple super phosphate under saline and non-saline conditions. Water and Soil, 37(6), 957–969. In Persian with English abstract.
Hazelton, P. and Murphy, B. (2016). Interpreting Soil Test Results: What Do All the Numbers Mean? CSIRO Publishing, Australia.
Hinsinger, P. (2001). Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant and Soil, 237(2), 173–195.
Hinsinger, P., Betencourt, E., Bernard, L., Brauman, A., Plassard, C., Shen, J., & Zhang, F. (2011). P for two, sharing a scarce resource: soil phosphorus acquisition in the rhizosphere of intercropped species. Plant Physiology, 156(3), 1078–1086.
Hinsinger, P., Plassard, C., Tang, C., & Jaillard, B. (2003). Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant and Soil, 248, 43–59.
Holford, I.C.R. (1997). Soil phosphorus: its measurement, and its uptake by plants. Soil Research, 35(2), 227–240.
IFA. (2021). International Fertilizer Association Statistics (IFASTAT). International Fertilizer Association (IFS), Paris, France. https://www.ifastat.org
Jia-En, Z., Ai-Xia, G., Hua-Qin, X., & Ming-Zhu, L. (2009). Effects of maize/peanut intercropping on rhizosphere soil microbes and nutrient contents. Yingyong Shengtai Xuebao, 20(7), 1597–602.
Jones, J.B. (2001). Laboratory Guide for Conducting Soil Tests and Plant Analysis. CRC Press LLC, Boca Raton, Florida, USA. 363 Pages.
Khoshgoftarmanesh, A.H., & Nourbakhsh, F. (2009). Salinity and plant residue effects on soil available phosphorus Journal of Plant Nutrition, 32(6), 954–966.
Kuczak, C.N., Fernandes, E.C., Lehmann, J., Rondon, M.A., & Luizao, F.J. (2006). Inorganic and organic phosphorus pools in earthworm casts (Glossoscolecidae) and a Brazilian rainforest Oxisol. Soil Biology and Biochemistry, 38(3), 553–560.
Kulhánek, M., Balík, J., Černý, J., Nedvěd, V., & Kotková, B. (2018). The influence of different intensities of phosphorus fertilizing on available phosphorus contents in soils and uptake by plants. Plant, Soil and Environment, 53, 382–387.
Kuo, S. (1996). Phosphorus. Pp. 869–918. In: Sparks, D.L. (Ed.) Methods of Soil Analysis. Part 3-Chemical Methods. Book Series No. 5, SSSA and ASA, Madison, WI, USA.
Li, H., Shen, J., Zhang, F., Clairotte, M., Drevon, J.J., Le Cadre, E., & Hinsinger, P. (2008). Dynamics of phosphorus fractions in the rhizosphere of common bean (Phaseolus vulgaris L.) and durum wheat (Triticum turgidum durum L.) grown in monocropping and intercropping systems. Plant and Soil, 312, 139–150.
Li, H., Shen, J., Zhang, F., Marschner, P., Cawthray, G., & Rengel, Z. (2010). Phosphorus uptake and rhizosphere properties of intercropped and monocropped maize, faba bean, and white lupin in acidic soil. Biology and Fertility of Soils, 46, 79–91.
Li, L., Sun, J., Zhang, F., Li, X., Rengel, Z., & Yang, S. (2001). Wheat/maize or wheat/soybean strip intercropping: II. Recovery or compensation of maize and soybean after wheat harvesting. Field Crops Research, 71(3), 173–181.
Liao, D., Zhang, C., Lambers, H., & Zhang, F. (2022). Adding intercropped maize and faba bean root residues increases phosphorus bioavailability in a calcareous soil due to organic phosphorus mineralization. Plant and Soil, 476(1), 201–218.
Liao, D., Zhang, C., Li, H., Lambers, H., & Zhang, F. (2020). Changes in soil phosphorus fractions following sole cropped and intercropped maize and faba bean grown on calcareous soil. Plant and Soil, 448, 587–601.
Lindsay, W.L., & Norvell, W. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42(3), 421–428.
Lindsay, WL. (1979). Chemical Equilibria in Soils. John Wiley and Sons, USA.
Lyu, Y., Tang, H., Li, H., Zhang, F., Rengel, Z., Whalley, W. R., & Shen, J. (2016). Major crop species show differential balance between root morphological and physiological responses to variable phosphorus supply. Frontiers in Plant Science, 7, 1939.
Ma, B., Zhou, Z.Y., Zhang, C.P., Zhang, G., & Hu, Y.J. (2009). Inorganic phosphorus fractions in the rhizosphere of xerophytic shrubs in the Alxa Desert. Journal of Arid Environments, 73(1), 55–61.
Ma, X., Yang, J., Zhou, X.J., Wu, H.T., Xiong, Q., & Li, Y. (2022). Transport of phosphorus in runoff and sediment with surface runoff from bare purple soil during indoor simulated rainfall. Journal of Mountain Science, 19(8), 2333–2345.
Makoi, J.H., Chimphango, S.B., & Dakora, F.D. (2010). Elevated levels of acid and alkaline phosphatase activity in roots and rhizosphere of cowpea (Vigna unguiculata L. Walp.) genotypes grown in mixed culture and at different densities with sorghum (Sorghum bicolor L.). Crop and Pasture Science, 61(4), 279–286.
Mardomi, S., Najafi, N., Reyhanitabar, A., & Dehghan, G. (2019). Effects of phosphorous and contamination of lead and zinc on extraction kinetics of the available P, Pb, and Zn in a calcareous soil under waterlogged conditions. Journal of Water and Soil Science, 29(2), 29–42. In Persian with English abstract.
Marschner, P. (2012). Marschner’s Mineral Nutrition of Higher Plants. Third Edition, Academic Press, London, UK.
Martinez, V., & Läuchli, A. (1994). Salt‐induced inhibition of phosphate uptake in plants of cotton (Gossypium hirsutum L.). New Phytologist, 126(4), 609–614.
McClure, S., and Roth, S. (1994). Companion Planting. Rodale Press, 160 pages.
Messaoudi, H., Gérard, F., Dokukin, P., Djamai, H., Rebouh, N.Y., & Latati, M. (2020). Effects of intercropping on field-scale phosphorus acquisition processes in a calcareous soil. Plant and Soil, 449, 331–341.
Motalebifard, R., Najafi, N., & Oustan, S. (2014). Effects of different soil moisture conditions and zinc sulfate and monocalcium phosphate fertilizers on the extractable-P in a calcareous soil. Water and Soil Science, 24(2), 227–241. In Persian with English abstract.
Najafi, N., & Mostafae, M. (2015). Improvement of corn plant nutrition by farmyard manure application and intercropping with bean and bitter vetch in a calcareous soil. Journal of Soil Management and Sustainable Production, 5(1), 1–22. In Persian with English abstract.
Najafi, N., & Towfighi, H. (2006). Effects of rhizosphere of rice on the inorganic phosphorus fractions in paddy soils of north of Iran: 1˗ Native phosphorus fractions. Iranian Journal of Agricultural Science, 37(5), 919–933. In Persian with English abstract.
Najafi, N., & Towfighi, H. (2012). Effects of rhizosphere of rice plant on the inorganic phosphorus fractions in the paddy soils (in North Iran) following P fertilizer application. Iranian Journal of Soil and Water Research, 43(3), 231–242. In Persian with English abstract.
Najafi, N., & Towfighi, H. (2013). Effects of soil moisture regimes and phosphorus fertilizer on available and inorganic P fractions in some paddy soils, north of Iran. Iranian Journal of Soil and Water Research, 42(2), 257–269. In Persian with English abstract.
Nasrin, S., Biswas, T.K., Amin, M.S., & Khatun, M. (2016). Study of salinity effects on the inorganic phosphorus transformation in three different soil series of Ganges River Floodplain. Jahangirnagar University Journal of Biological Sciences, 5(1), 71–79.
Nelson, D.W., & Sommers, L.E. (1996). Total carbon, organic carbon and organic matter. Pp. 961–1010. In: Sparks D.L., Page A.L., Helmke P.A., Loeppert R.H., Soltanpour P.N., Tabatabai M.A., Johnston C.T. and Sumner M.E. (Eds).  Methods of Soil Analysis. Part 3. Chemical Methods. Soil Science Society of America Book Series 5, Madison, USA.
Ouma, G., & Jeruto, P. (2010). Sustainable horticultural crop production through intercropping: The case of fruits and vegetable crops: A review. Agriculture and Biology Journal of North America, 1(5), 1098–1105.
Pearse, S.J., Veneklaas, E.J., Cawthray, G.R., Bolland, M.D., & Lambers, H. (2006). Carboxylate release of wheat, canola and 11 grain legume species as affected by phosphorus status. Plant and Soil, 288, 127–139.
Penn, C.J., & Camberato, J.J. (2019). A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture, 9(6), 120.
Piegholdt, C., Geisseler, D., Koch, H.J., & Ludwig, B. (2013). Long‐term tillage effects on the distribution of phosphorus fractions of loess soils in Germany. Journal of Plant Nutrition and Soil Science, 176(2), 217–226.
Reichard, P.U., Kretzschmar, R., & Kraemer, S.M. (2007). Dissolution mechanisms of goethite in the presence of siderophores and organic acids. Geochimica et Cosmochimica Acta, 71(23), 5635–5650.
Rhoades, J.D. (1996). Salinity: Electrical conductivity and total dissolved solids. Pp. 417–434. In: Sparks D.L. (Ed.) Methods of Soil Analysis. Part 3-Chemical Methods. Book Series No. 5, SSSA and ASA, Madison, WI, USA.
Safari Sinegani, A.A., & Rashidi, T. (2011). Changes in phosphorus fractions in the rhizosphere of some crop species under glasshouse conditions. Journal of Plant Nutrition and Soil Science, 174(6), 899–907.
Saleh, J., Najafi, N., Oustan, S., Aliasgharzad, N., & Ghassemi-Golezani, K. (2013). Changes in extractable Si, Fe, and Mn as affected by silicon, salinity, and waterlogging in a sandy loam soil. Communications in Soil Science and Plant Analysis, 44(10), 1588–1598.
Schaap, K.J., Fuchslueger, L., Hoosbeek, M.R., Hofhansl, F., Martins, N.P., Valverde-Barrantes, O.J., & Quesada, C.A. (2021). Litter inputs and phosphatase activity affect the temporal variability of organic phosphorus in a tropical forest soil in the Central Amazon. Plant and Soil, 469, 423–441.
Singh, Y., Dobermann, A., Singh, B., Bronson, K.F., Bronson, C.S., & Khind C.S. (2000). Optimal phosphorus management strategies for wheat-rice cropping on loamy sand. Soil Science Society of America Journal, 64, 1413–1420.
Souid, A., Hamdi, W., L’taief, B., Attallah, A., Hamdi, N., Alshaharni, M.O., & Zagrarni, M.F. (2024). The potential of durum wheat–chickpea intercropping to improve the soil available phosphorus status and biomass production in a subtropical climate. Plos one, 19(5), e0300573.
Sun, B., Gao, Y., Wu, X., Ma, H., Zheng, C., Wang, X., & Yang, H. (2020). The relative contributions of pH, organic anions, and phosphatase to rhizosphere soil phosphorus mobilization and crop phosphorus uptake in maize/alfalfa polyculture. Plant and Soil, 447, 117–133.
Tandon, H. (1987). Phosphorus research and Agricultural Production in India. Fertilizer Development and Consultation Organization, New Delhi, India.
Thomas, G.W. (1996). Soil pH and soil acidity. Pp. 475–489. In: Sparks D.L. (Ed.) Methods of Soil Analysis. Part 3-Chemical Methods. Book Series No. 5, SSSA and ASA, Madison, WI, USA.
Tian, X., Engel, B.A., Qian, H., Hua, E., Sun, S., & Wang, Y. (2021). Will reaching the maximum achievable yield potential meet future global food demand? Journal of Cleaner Production, 294, 126285.
Van Dijk, G., Lamers, L.P., Loeb, R., Westendorp, P.J., Kuiperij, R., van Kleef, H. H., & Smolders, A.J. (2019). Salinization lowers nutrient availability in formerly brackish freshwater wetlands; unexpected results from a long-term field experiment. Biogeochemistry, 143, 67–83.
 Van Tan, L., & Thanh, T. (2021). The effects of salinity on changes in characteristics of soils collected in a saline region of the Mekong Delta, Vietnam. Open Chemistry, 19(1), 471–480.
Wang, X., Deng, X., Pu, T., Song, C., Yong, T., Yang, F., & Yang, W. (2017). Contribution of interspecific interactions and phosphorus application to increasing soil phosphorus availability in relay intercropping systems. Field Crops Research, 204, 12–22.
Wang, Z., Straub, D., Yang, H., Kania, A., Shen, J., Ludewig, U., & Neumann, G. (2014). The regulatory network of cluster‐root function and development in phosphate‐deficient white lupin (Lupinus albus L.) identified by transcriptome sequencing. Physiologia Plantarum, 151(3), 323–338.
 Wright, A.L. (2009). Phosphorus sequestration in soil aggregates after long-term tillage and cropping. Soil and Tillage Research, 103(2), 406–411.
Xie, W., Yang, J., Gao, S., Yao, R., & Wang, X. (2022). The effect and influence mechanism of soil salinity on phosphorus availability in coastal salt-affected soils. Water, 14(18), 2804.
Yan, X., Yang, W., Chen, X., Wang, M., Wang, W., Ye, D., & Wu, L. (2020). Soil phosphorus pools, bioavailability and environmental risk in response to the phosphorus supply in the red soil of southern China. International Journal of Environmental Research and Public Health, 17(20), 7384.
Yan, X., Yang, W., Chen, X., Wang, M., Wang, W., Ye, D., & Wu, L. (2020). Soil phosphorus pools, bioavailability and environmental risk in response to the phosphorus supply in the red soil of Southern China. International Journal of Environmental Research and Public Health, 17, 7384.
Yang, Z., Zhang, Y., Wang, Y., Zhang, H., Zhu, Q., Yan, B., & Luo, G. (2022). Intercropping regulation of soil phosphorus composition and microbially-driven dynamics facilitates maize phosphorus uptake and productivity improvement. Field Crops Research, 287, 108666.
Ye, X.F., Bai, J.H., Lu, Q.Q., Zhao, Q.Q., & Wang, J.J. (2013). Soil phosphorus pools, bioavailability and environmental risk in response to the phosphorus supply in the red soil of Southern China. International Journal of Environmental Research and Public Health, 17, 7384.
Yu, X., Keitel, C., & Dijkstra, F.A. (2021). Global analysis of phosphorus fertilizer use efficiency in cereal crops. Global Food Security, 29, 100545.
Zheli, D., Kheir, A.M., Mohamed, M.G., Ali, O.A.M., Abdelaal, A.I.N., Lin, X.E., Zhou, Z., Wang, B., Liu, B., & He, Z. (2020). The integrated effect of salinity, organic amendments, phosphorus fertilizers, and deficit irrigation on soil properties, phosphorus fractionation and wheat productivity. Scientific Reports, 10(1), 2736.