تعیین حدود بحرانی ویژگی‌های مؤثر بر کیفیت خاک شالیزار در لندفرم‌های مختلف (مطالعه موردی: لنگرود، استان گیلان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم خاک، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران

2 بخش خاک و آب. موسسه تحقیقات برنج کشور. رشت. ایران

10.22059/ijswr.2024.377878.669731

چکیده

ارزیابی کیفیت خاک و شناسایی شاخص‌های کلیدی با حدود بحرانی آن‌ها برای حفظ عملکرد طبیعی خاک و بهره‌وری محصولات به‌ویژه برنج، بسیار مهم است. هدف از این پژوهش تعیین حداقل ویژگی‌های مؤثر بر کیفیت خاک (MDS) بر اساس ویژگی‌های لندفرم‌ها و تعیین حدود بحرانی آن‌ها بر اساس عملکرد برنج در شهرستان لنگرود استان گیلان می‌باشد. به این منظور 80 نمونه خاک مرکب از سه لندفرم کوهستان، دشت آبرفتی و اراضی ساحلی از عمق صفر تا 30 سانتی‌متر جمع‌آوری شد و در مجموع 17 ویژگی فیزیکی، شیمیایی و زیستی خاک اندازه‌گیری شد. ویژگی‏های MDS در هر لندفرم با استفاده از داده‌های کمکی استخراج‌شده از مدل رقومی ارتفاع (DEM) و مقادیر ارزش نرم ویژگی‌های خاک به دست آمد. در نهایت شاخص کیفیت تجمعی (IQI) برای هر لندفرم محاسبه شد. نتایج نشان داد که درصد رس، کربن آلی، پتاسیم قابل‌استفاده، تنفس میکروبی خاک و فسفاتاز ویژگی‌های مؤثر بر کیفیت خاک و عملکرد محصول در هر سه لندفرم می‌باشند. همچنین پتاسیم قابل‌استفاده در هر سه لندفرم اراضی ساحلی (87/0=R2)، دشت آبرفتی (85/0=R2) و کوهستان (90/0=R2) بالاترین همبستگی با عملکرد برنج را نشان داد. حد پایین و بالای شاخص کیفیت خاک در اراضی ساحلی به ترتیب 39/0 و 65/0، در دشت آبرفتی 56/0 و 76/0 و در کوهستان 41/0 و 73/0 برای رسیدن به 40 و 80 درصد عملکرد نسبی بدست آمد. بیشترین همبستگی بین شاخص کیفیت خاک و عملکرد نسبی (87/0=R2) برای شالیزارهای کوهستان به دست آمد. پهنه‌بندی‏ها نشان داد که شالیزارهای کم بازده در مناطق ساحلی قرار داشته و از کمترین میانگین شاخص کیفیت خاک برخوردار هستند که به دلیل بافت سبک‏تر خاک و مجاورت با دریای خزر است. در مقابل شالیزارهای کوهستان با بیشترین میانگین شاخص کیفیت خاک، از بیشترین مقدار عملکرد محصول برخوردار هستند. بنابراین تعیین حدود بحرانی ویژگی‏های مؤثر بر کیفیت خاک به عنوان تابعی از عملکرد برنج، در بهبود شیوه‏های مدیریتی و بهره‌وری پایدار اراضی شالیزاری کاربرد دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determining the critical limits of soil quality indicators for paddy fields in different landforms (Case study: Langarud, Guilan Province)

نویسندگان [English]

  • Nafiseh Yaghmaeian Mahabadi 1
  • Seyedeh Fatemeh Nabavi 1
  • Hasan Ramezanpour 1
  • Mohammad Bagher Farhangi 1
  • Shahram MahmoudSoltani 2
1 Department of Soil Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
2 Soil and Water Department, Rice Research Institute of Iran, Rasht, Iran
چکیده [English]

Assessment of soil quality and identification of key indicators with their critical limits are very important for maintaining soil functions and rice productivity. The aim of this research was to determine the minimum data set (MDS) based on terrain attributes and to establish critical limits based on rice yield in Langarud, Guilan Province. Composite soil samples (0-30 cm) were collected from three landforms: mountain, alluvial plain, and coastal area. The MDS in each landform were obtained using auxiliary data extracted from DEM, and the Norm values of soil properties. Finally, the integrated quality index (IQI) was calculated for each landform. Available potassium showed the highest correlation with rice yield in the coastal (R2 = 0.87), alluvial plain (R2 = 0.85), and mountain (R2 = 0.90). The lower and upper limits of the IQI for 40% and 80% relative yield were 0.39 and 0.65 in coastal area, 0.56 and 0.76 in alluvial plain, and 0.41 and 0.73 in mountain, respectively. The highest correlation between the soil quality index (SQI) and relative yield (R2 = 0.87) was obtained for mountain. The mapping showed that the low productivity paddy fields are located in the coastal areas, where the SQI is the lowest. This observation is possibly attributed to the coarser soil texture and the proximity to the Caspian Sea. In contrast, paddy fields in mountain exhibited the highest SQI and yield. Therefore, determining the critical limits for MDS is essential for improving management practices and achieving sustainable productivity in paddy fields.

کلیدواژه‌ها [English]

  • Critical limits
  • Norm value
  • Relative yield
  • Terrain attributes

EXTENDED ABSTRACT

 

Introduction:

Identifying key indicators and determining critical limits of soil quality that affect fertilization levels is crucial. Enhancing the productivity of paddy fields, which is important for ensuring national food security, is impeded by numerous challenges. Systematic evaluation of soil quality can support productivity enhancement. Disregarding this can lead to the ineffective use of chemical fertilizers, which not only fails to increase agricultural productivity but also imposes additional costs, disrupts the balance of nutrients in the soil, and contributes to environmental issues.

Objective:

The aim of this research was to establish the minimum data set (MDS) based on terrain attributes and norm values of soil indicators and, to identify upper and lower critical limits of the soil quality indicators and soil quality index based on the local rice yields under field condition in Langarud city, Guilan Province.

Material and method:

80 Composite soil samples were collected from three landforms, including mountain, alluvial plain, and coastal area, at depth of 0-30 cm, and 17 physical, chemical, and biological soil properties were measured. The principal components analysis (PCA) method was applied to identify the key soil indicators that better represent the effect on soil quality. The principal components with eigenvalues greater than one were considered for MDS selection. After determining the principal components, variables with high factor loadings in each principal component were separated using the factor rotation method. In order to reduce the number of components and select MDS, Bartlett's test and KMO coefficient were used. A KMO coefficient close to 1 is ideal, and typically, a value exceeding 0.6 is considered appropriate for conducting a PCA. Then, The MDS in each landform were obtained using auxiliary data extracted from the digital elevation model (DEM) and the Norm values of soil properties. Finally, the integrated quality index (IQI) was calculated for each landform. The critical limits of each MDS in different landforms were determined based on linear relationships between MDS indicators and relative yield (RY).

Result and Discussion:

The results showed that clay content, organic carbon, available potassium, soil microbial respiration, and phosphatase were identified as most important MDS influencing soil quality and crop yield in three landforms. Additionally, available potassium showed the highest correlation with rice yield in the coastal (R2 = 0.87), alluvial plain (R2 = 0.85), and mountain (R2 = 0.90). The lower and upper limits of the soil quality index for 40% and 80% relative yield were 0.39 and 0.65 in coastal area, 0.56 and 0.76 in alluvial plain, and 0.41 and 0.73 in mountain, respectively. The highest correlation between the soil quality index and relative yield (R2 = 0.87) was obtained for mountain. The mapping showed that the low productivity paddy fields are located in the coastal areas, where the average soil quality index is the lowest. This observation is possibly attributed to the coarser soil texture and the proximity to the Caspian Sea. In contrast, paddy fields in mountain with the highest average of soil quality index have the highest yield. Therefore, determining the critical limits of MDS as a function of rice yield is crucial for improving management practices and achieving sustainable productivity in paddy fields.

Author Contributions

Seyedeh Fatemeh Nabavi: methodology, software, data curation, writing-original draft, formal analysis. Nafiseh Yaghmaeian Mahabadi: conceptualization, methodology, data curation, validation, writing-review and editing, supervision, project administration. Hassan Ramezanpour: writing-review and editing. Mohammad Bagher Farhangi: data curation, validation, writing-review and editing. Shahram Mahmoud Soltani: writing-review and editing. All authors have read and agreed to the published version of the manuscript.

Data Availability Statement

Data is available on reasonable request from the authors.

Acknowledgements

The authors would like to thank the reviewers and editor for their critical comments that helped to improve the paper. The authors gratefully acknowledge the support and facilities provided by the Department of Soil Science, University of Guilan, Iran.

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The author declares no conflict of interest.

Anderson, J.P.E. (1982). Soil Respiration. In A. L. Page, et al. (Eds.). Methods of Soil Analysis: 2nd ed. Part 2. American Society of Agronomy. (pp. 831-872). U.S.A.
Askari, M.S. & Holden N.M. (2015). Quantitative soil quality indexing of temperate arable management systems. Soil and Tillage Research, 150, 57-67. https://doi.org/10.1016/j.still.2015.01.010.
Bakhshandeh, E., Hossieni, M., Zeraatpisheh, M. & Francaviglia, R. (2019). Land use change effects on soil quality and biological fertility: a case study in northern Iran. European Journal of Soil Biology, 95, 103119. https://doi.org/10.1016/j.ejsobi.2019.103119.
Barah, B.C. & Pandey, S. (2005). Rainfed Rice Production Systems in Eastern India: An On-Farm Diagnosis and Policy Alternatives. Indian journal of agricultural Economics, 60(1), 110-136. https://doi.10.22004/ag.econ.204391.
Bi, C. J., Chen, Z. L., Wang, J. & Zhou, D. (2013). Quantitative assessment of soil health under different planting patterns and soil types. Pedosphere, 23(2), 194-204. 10.1016/S1002-0160(13)60007-7.
Biswas, S., Hazra, G.C., Purakayastha, T.J., Saha, N., Mitran, T., Roy, S.S., Basak, N. & Mandal, B. (2017). Establishment of critical limits of indicators and indices of soil quality in rice-rice cropping systems under different soil orders. Geoderma, 292, 34–48. https://doi.org/10.1016/j.geoderma.2017.01.003.
Blake, G.R. & Hartage, K.H. (1986). Bulk density. In: Klute, A. (Ed.), Method of Soil Analysis, Part I. Physical and Mineralogical Methods: Agronomy Monograph no. 9, second ed., pp. 363–375. https://doi.org/10.2136/sssabookser5.1.2ed.c13.
Brookes, P.C., Powlson, D.S. & Jenkinson, D.S. (1982). Measurement of microbial biomass phosphorus in soil. Soil biology and biochemistry. 14: 319-329. https://doi.org/10.1016/0038-0717(82)90001-3.
Carter, M.R. & Gregorich, E.G. (2000). Soil sampling and methods of analysis. CRC press. 499-511.
Choudhury, B. U. & Mandal, S. (2021). Indexing soil properties through constructing minimum datasets for soil quality assessment of surface and profile soils of intermontane valley (Barak, North East India). Ecological Indicators, 123, 107369.‏ https://doi.org/10.1016/j.ecolind.2021.107369.
Choudhury, B. U., & Mandal, S. (2021). Indexing soil properties through constructing minimum datasets for soil quality assessment of surface and profile soils of intermontane valley (Barak, North East India). Ecological Indicators, 123, 107369.‏ https://doi.org/10.1016/j.ecolind.2021.107369.
Congreves, K. A., Hayes, A., Verhallen, E. A. & Van Eerd, L. L. (2015). Long-term impact of tillage and crop rotation on soil health at four temperate agroecosystems. Soil and Tillage Research, 152, 17-28. https://doi.org/10.1016/j.still.2015.03.012.
Dengiz, O. (2019). Soil quality index for paddy fields based on standard scoring functions and weight allocation method. Archives of Agronomy and Soil Science, 66(3), 301-315. https://doi.org/10.1080/03650340.2019.1610880.
Derakhshan-Babaei, F., Nosrati, K., Mirghaed, F. A. & Egli, M. (2021). The interrelation between landform, land-use, erosion and soil quality in the Kan catchment of the Tehran province, central Iran. Catena, 204, 105412.‏ https://doi.org/10.1016/j.catena.2021.105412.
Emami, H., Astaraei, A.R. & Fotovat, A. (2014).  Evaluating the effect of organic matter on soil quality score functions. Journal of Water and Soil, 28 (3), 565-574.  20.1001.1.20084757.1393.28.3.12.2. (In Persian).
Friedman, D., Hubbs, M., Tugel, A., Seybold, C. & Sucik, M. (2001). Guidelines for soil quality assessment in conservation planning. United States Department of Agriculture. Natural Resources Conservation.
Hemmati, S., Yaghmaeian, N., Farhangi, M.B. & Sabouri, A. (2023). Soil quality assessment of paddy fields (in Northern Iran) with different productivities: establishing the critical limits of minimum data set indicators. Environmental Science and Pollution Research. 30(4), 10286-10296.‏ https://doi.org/10.1007/s11356-022-22846-8.
Jiang, M., Xu, L., Chen, X., Zhu, H. & Fan, H. (2020). Soil quality assessment based on a minimum data set: a case study of a county in the typical river delta wetlands. Sustainability. 12(21), 9033. https://doi.org/10.3390/su12219033.
Kaiser, H.F. (1960). The application of electronic computers to factor analysis. Educational and psychological measurement. 20(1), 141–151. https://doi.org/10.1177/001316446002000116.
Kemper, W. D. & Rosenau, R. C. (1986). Aggregate stability and size distribution. Methods of soil analysis: Part 1 Physical and mineralogical methods, 5, 425-442.‏ https://doi.org/10.2136/sssabookser5.1.2ed.c17.
Li, P., Zhang, T., Wang, X. & Yi, D. (2013). Development of biological soil quality indicator system for subtropical China. Soil and Tillage Research. 126, 112-118. https://doi.org/10.1016/j.still.2012.07.011.
Li, X., Wang, D., Ren, Y., Wang, Z. & Zhou, Y. (2019). Soil quality assessment of croplands in the black soil zone of Jilin Province, China: Establishing a minimum data set model. Ecological Indicators. 107, 105251.‏ https://doi.org/10.1016/j.ecolind.2019.03.028.
Liu, Z., Zhou, W., Li, S., He, P., Liang, G., Lv, J., & Jin, H. (2015). Assessing soil quality of gleyed paddy soils with different productivities in subtropical China. Catena. 133:293–302. https://doi.org/10.1016/j.catena.2015.05.029.
Lopes, A.A.C., Sousa, D.M.G., Chaer, G.M., Junior, F.B.R., Goedert, W.J., & Mendes, I.C. (2013). Interpretation of microbial soil indicators as a function of crop yield and organic carbon. Soil Science Society of America Journal, 77, 461–472. https://doi.org/10.2136/sssaj2012.0191.
McLean, E.O. (1982). Soil pH and lime requirement. In: Page AL, Miller RH, Keeney DR (eds) Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties, vol 9, 2nd edn. ASA-SSSA, Madison, WI, pp 199–224.
Merrill, S.D., Liebig, M.A., Tanaka, D.L., Krupinsky, J.M. & Hanson, J.D. (2013). Comparison of soil quality and productivity at two sites differing in profile structure and topsoil properties. Agriculture ecosystems and environment, 179, 53-61. https://doi.org/10.1016/j.agee.2013.07.011.
Nabiollahi, K., Golmohamadi, F., Taghizadeh-Mehrjardi, R., Kerry, R. & Davari, M. (2018). Assessing the effects of slope gradient and land use change on soil quality degradation through digital mapping of soil quality indices and soil loss rate. Geoderma. 318, 16-28.‏ https://doi.org/10.1016/j.geoderma.2017.12.024.
Nelson, D. A. & Sommers, L. (1996). Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 3. Chemical methods. 5, 961-1010.‏ https://doi.org/10.2136/sssabookser5.3.c34.
Olsen, S.R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). US Department of Agriculture.
Qi, Y., Darilek, J. L., Huang, B., Zhao, Y., Sun, W. & Gu, Z. (2009). Evaluating soil quality indices in an agricultural region of Jiangsu Province, China. Geoderma, 149 (3–4), 325-334. https://doi.org/10.1016/j.geoderma.2008.12.015.
Raiesi, F. & Tavakoli, M. (2022). Developing a soil quality index model for assessing landscape-level soil quality along a toposequence in almond orchards using factor analysis. Modeling Earth Systems and Environment, 8(3), 4035-4050.‏
Raiesi, F. (2017). A minimum data set and soil quality index to quantify the effect of land use conversion on soil quality and degradation in native rangelands of upland arid and semiarid regions. Ecological indicators, 75, 307-320.‏
Rhoades, J.D. (1982). Soluble salts. In: Page AL (ed) Methods of soil analysis, part II, 2nd ed., ASA, Monograph No. 9, Madison, WI, pp 167–179. https://doi.org/10.2134/agronmonogr9.2.2ed.c10.
Saleh, A. M., Elsharkawy, M. M., AbdelRahman, M. A. & Arafat, S.M. (2021). Evaluation of soil quality in arid western fringes of the Nile Delta for sustainable agriculture. Applied and Environmental Soil Science. 1-17.‏ https://doi.org/10.1155/2021/1434692.
Samaei, F., Emami, H. & Lakzian, A. (2022). Assessing soil quality of pasture and agriculture land uses in Shandiz county, northwestern Iran. Ecological Indicators. 139, 108974.‏ https://doi.org/10.1016/j.ecolind.2022.108974.
Sarapatka, B., Cap, L. & Bila, P. (2018). The varying effect of water erosion on chemical and biochemical soil properties in different parts of Chernozem slopes. Geoderma. 314:20–26. https:// doi. org/ 10. 1016/j. geode rma. 2017. 10. 037.
Seyed mohammadi, J., Matinfar, H.R., & Esmaeel nejad. L. (2018). Multivariate statistical technique for variability analysis of physical and chemical properties along a paddy soils toposequence. Modeling Earth Systems and Environment, 4(2), 777-791. https://doi.org/10.1007/s40808-018-0450-0.
Sheidai Karkaj, E., Sepehry, A., Barani, H., Motamedi, J. & Shahbazi, F. (2019). Establishing a suitable soil quality index for semi-arid rangeland ecosystems in northwest of Iran. Journal of Soil Science and Plant Nutrition. 19, 648-658.‏ https://doi.org/10.1007/s42729-019-00065-4.
Soil Survey Staff. (2014). Keys to Soil Taxonomy. 12th ed. USDA. SCS. Agric. Washington. D.C.
Tabatabai, M. A. (1994). Soil enzymes. Methods of soil analysis: Part 2 Microbiological and biochemical properties. 5, 775-833. https://doi.org/10.2136/sssabookser5.2.c37. (In Persian).
Takoutsing, B., Weber, J., Aynekulu, E., Martín, J. A. R., Shepherd, K., Sila, A., & Diby, L. (2016). Assessment of soil health indicators for sustainable production of maize in smallholder farming systems in the highlands of Cameroon. Geoderma, 276, 64-73. https://doi.org/10.1016/j.geoderma.2016.04.027.
Tian, K., Zhang, B., Zhang, H., Huang, B., Darilek, J.L., Zhao, Y. & Yang. J. (2020). Evaluation of soil quality in major grain-producing region of the North China Plain: integrating minimum data set and established critical limits. Ecological Indicators. 117, 106613. https://doi.org/10.1016/j.ecolind.2020.106613.
USDA. (2012). Java Newhall (Soil Climate) Simulation Model (jNSM). United State Department of Agriculture, Natural Resources Conservation Service.
Vance, E. D., Brookes, P. C. & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass C. Soil biology and Biochemistry. 19(6), 703-707. https://doi.org/10.1016/0038-0717 (87)90052-6.
Walkley, A. & Black, I.A. (1934). An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37, 29-37.
Wang, C., Zhang, Z., Zhang, J., Tao, F., Chen, Y. & Ding, H. (2019). The effect of terrain factors on rice production: A case study in Hunan Province. Journal of Geographical Sciences. 29, 287-305.‏ https://doi.org/10.1007/s11442-019-1597-y.
Wickings, K., Grandy, A.S. &.Kravchenko, A.N. (2016). Going with the flow: landscape position drives differences in microbial biomass and activity in conventional, low input, and organic agricultural systems in the Midwestern U.S. Agriculture, Ecosystems & Environment. 218:1–10. https:// doi. org/ 10. 1016/j. agee. 2015. 11. 005.