ارزیابی مناطق مناسب کاشت گیاه گندم، ذرت، چغندرقند و گوجه‌فرنگی در اقلیم‌های مختلف ایران با توجه به اثرات تغییر اقلیم به کمک نرم‌افزار اکوآکراپ

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی، مشهد، ایران

2 گروه علوم و مهندسی آب، دانشگاه فردوسی مشهد، مشهد، ایران

3 گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

انتخاب گیاهان مناسب برای کشت در هر منطقه، با توجه به تاب‌آوری سیستم زراعی و وضعیت آب، از ابعاد حیاتی در تدوین استراتژی زراعی کشور بوده و مستلزم برنامه‌ریزی دقیق است. پژوهش حاضر به ‌منظور ارائه چارچوبی کلی برای یافتن بهترین منطقه برای کشت محصولات گوجه‌فرنگی، گندم، ذرت علوفه‌ای و چغندرقند، در 12 نقطه انتخابی از ایران با اعمال پراکنش و تغییرات اقلیمی از سال 1980 تا 2020 صورت گرفت. در این پژوهش برای انجام شبیه‌سازی‌های گیاهی از مدل اکواکراپ استفاده شد. پس از مقایسه مقادیر محصول خشک گزارش‌شده در هر یک از 12 مناطق مورد مطالعه توسط سازمان جهاد کشاورزی و مقادیر مدل‌سازی‌شده توسط اکواکراپ، خطای صحت‌سنجی  برای مناطق مذکور و محصولات چغندرقند 4/8 درصد، گوجه‌فرنگی 3/8 درصد، گندم 6/6 درصد، و ذرت 4/6 درصد بود. به طور میانگین مدل قادر به شبیه‌سازی مقدار محصول خشک تولیدی با خطای زیر 10 درصد بوده‌ است. برای پیش‌نگری مقدار محصول تولیدی در آینده نزدیک، داده‌های اقلیمی مدل‌سازی هواشناسی MRI-ESM 0-2 با خروجی‌های سیمیپ6 در نرم‌افزار سیم‌هاید تهیه ‌شد. با تحلیل داده‌های مدل‌سازی و تاریخی، برای گندم، چغندرقند، ذرت علوفه‌ای و گوجه‌فرنگی، بیشترین و کمترین مقدار تولید به ترتیب در اصفهان و زاهدان، ارومیه و بجنورد، اصفهان و مشهد، و زنجان و زاهدان مشخص شد. شاخص قابل‌مقایسه بین محصولات در شهرهای مختلف برای دو حالت برنامه‌ریزی‌شده و پتانسیل، از سه شاخص مقدار جرم و قیمت ریالی محصول و عمق آب آبیاری، استفاده شد. اولویت کشت محصولات در هر شهر با قیاس 3 عامل بهترین و ضعیف‌ترین مکان کشت گوجه‌فرنگی، ذرت علوفه‌ای، گندم و چغندرقند به ترتیب کرمانشاه و زاهدان، اصفهان و مشهد، تهران و زاهدان، کرمانشاه و مشهد است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessment of suitable areas for cultivation of wheat, corn, sugar beet, and tomato in different climates of Iran considering the climate change effects using AquaCrop model

نویسندگان [English]

  • Maedeh Soltani Sistani 1
  • Hossien Ansari 2
  • Kamran Davary 3
  • Mohammadreza Naghedifar 1
1 Water Science and Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
2 Water Engineering and Science Department of Ferdowsi University of Mashhad, Mashhad, Iran.
3 Department of Water Science and Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

Choosing suitable crops for cultivation in each region, considering the resilience of the agronomic system and water status is a vital aspect in formulating the country's agronomic strategy and requires meticulous planning. The present study was conducted to provide a general framework for finding the best area for cultivating tomato, wheat, fodder corn and sugar beet crops in 12 selected lacations of Iran by applying distribution and climate change from 1980 to 2020. In this study the Aqua Crop model was used to perform plant simulations. After comparing the dry product values reported in each of the 12 regions studied by the Agricultural Jihad Organization and the valued modeled by AquaCrop, the validation error for the mentioned regions was estimated to be 4.8, 3.8, 6.6 and 4.6 percent for sugar beets, tomatoes, wheat, and fodder corn, respectively. The model was able to consistently demonstrate an average simulation error below 10 percent. Prediction of future crop production was derived from climate data sourced from the MRI-ESM 0-2 weather modeling software, using SIMIP6 and SIMHIDE models. By analyzing the modeling and historical data for the proposed crops, the highest and lowest amounts of wheat, sugar beet, fodder corn and tomato were determined in Isfahan and Zahedan, Urmia and Bojnord, Isfahan and Mashhad, and Zanjan and Zahedah, respectively. Three indicators of mass amount, crop price and irrigation depth were used as Comparable indices among the crops in different cities for the two planned and potential modes.  The priority of crop cultivation in each city, to decide which crop is the best and prioritize them, was determined using mass, product price, and irrigation water depth. The study highlights the best and worst locations for cultivating tomatoes, fodder corn, wheat, and sugar beets as Kermanshah and Zahedan, Isfahan and Mashhad, Tehran and Zahedan, and Kermanshah and Mashhad, respectively.

کلیدواژه‌ها [English]

  • Aquacrop
  • crop production forecasting
  • Cmhyd
  • plant modeling

EXTENDED ABSTRACT

Introduction:

The pivotal task of selecting crops for a country's agricultural strategy, considering resilience and water conditions, demands meticulous planning. This study delves into the assessment of spatial potential for cultivating tomatoes, wheat, forage corn, and sugar beet across 12 diverse points in Iran. These locations include Mashhad, Kermanshah, Qazvin, Shiraz, Semnan, Zanjan, Zahedan, Tehran, Bandar Abbas, Bojnourd, Isfahan, and Urmia. The geographical spread encompasses a variety of climate conditions, and the analysis spans the years 1980 to 2020. This comprehensive approach aims to provide a nuanced understanding of the agricultural landscape in these key regions, guiding strategic decisions for sustainable crop cultivation.

Materials and Methods:

By employing the Hargreaves–Samani equation, Rosetta pedotransfer model, and NetWat, our study intricately calculates daily reference evapotranspiration, soil characteristics, and irrigation water planning. The comprehensive approach involves utilizing the AquaCrop model to formulate dry product quantities, which are then rigorously validated against data from the Ministry of Agriculture Jihad. The comparison of measured values with AquaCrop-modeled dry yields results in validation error rates of 4.8 percent for sugar beet, 3.8 percent for tomatoes, 6.6 percent for wheat, and 4.6 percent for corn. On average, the model showcases an impressive simulation accuracy of 90 percent, with an overall error rate remaining below 10 percent. To forecast future crop yields, we leverage climate data from the meteorological model MRI-ESM 0-2 with CMIP6 outputs, obtained through the CMhyd software.

Results and Discussion:

Analyzing both modeling and historical data unveils considerable variations in production levels for wheat, sugar beet, forage corn, and tomatoes across different cities. The prioritization, based on factors like crop mass, irrigation water depth, and monetary value, provides valuable insights into identifying the most and least suitable locations for each crop. This process aids in efficient resource management and informed decision-making, offering crucial guidance for agricultural and environmental experts. By evaluating the highest and lowest production levels in cities such as Isfahan, Zahedan, Urumieh, Bojnord, Mashhad, and Zanjan, the study explores a comprehensive perspective on crop cultivation dynamics. The utilization of three indices—crop mass, irrigation water depth, and monetary value—enhances the accuracy of comparisons, ensuring a nuanced understanding of the planning required for cultivating various crops in different cities. The prioritization achieved in this research not only optimizes resource management but also underscores the importance of sustainable practices for the preservation of vital resources.

Conclusions:

The research, by emphasizing the importance of comprehensive studies, not only contributes to national food security but also plays a pivotal role in ecosystem preservation. The prioritization process, a key outcome of this study, significantly enhances efficient resource management, providing substantial support for the principles of sustainable agriculture. This research serves as a guiding beacon for agricultural and environmental experts, empowering them with precise planning insights for cultivating crops optimally. The identified gap in existing research endeavors, considering multifaceted aspects, accentuates the urgency of undertaking such investigations. The holistic approach proposed in this study is not just essential but imperative for safeguarding national food security and ensuring the preservation of ecosystems. By addressing these critical aspects, the research paves the way for a sustainable future, where prudent decision-making aligns with the long-term well-being of both agriculture and the environment

Author Contributions

For research articles with several authors, a short paragraph specifying their individual contributions must be provided. The following statements should be used “Conceptualization, M.Ss., H.A., K.D. and SM.N.; methodology, M.Ss., H.A., K.D. and SM.N.; software, M.Ss. and SM.N.; validation, M.Ss. and SM.N.; formal analysis, M.Ss., H.A., K.D. and SM.N.; investigation, M.Ss. and SM.N.; resources, H.A. and K.D; data curation, M.Ss. and SM.N.; writing—original draft preparation, M.Ss. and SM.N.; writing—review and editing, M.Ss., H.A., K.D. and SM.N.; visualization, M.Ss. and SM.N.; supervision, H.A., K.D. and SM.N.; funding acquisition, H.A. and K.D. All authors have read and agreed to the published version of the manuscript

Data Availability Statement

Data is available on reasonable request from the authors.

Acknowledgements

The authors would like to thank all participants of the present study.

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The author declares no conflict of interest.

Alishiri, R., Paknejad, F., Aghayari, F. (2014). Simulation of sugarbeet growth under different water regimes and nitrogen levels by Aqua crop. 4. 1-9. 10.12692/ijb/4.4.1-9.
Andarzian, B. & Bannayan, Mohammad & Steduto, Pasquale & Mazraeh, Hamed & Barati, Mehdi & Barati, M. & Rahnama, Amir. (2011). Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran. Fuel and Energy Abstracts. 100. 1-8. 10.1016/j.agwat.2011.08.023.
Ansari, S., Dehban, H., Zareian, M.j., Farokhnia, Ashkan. (2022). Investigation of temperature and precipitation changes in the Iran's basins in the next 20 years based on the output of CMIP6 model. Iranian Water Research Journal, 11 to 24. (In Persian).
Bao, Y., Hoogenboom, G., Mcclendon, R., & Vellidis, G. (2017). A comparison of the performance of the CSM-CERES-Maize and EPIC models using maize variety trial data. Agricultural Systems, 150, 109-119. doi: 10.1016/j.agsy.2016.10.006.
Bleischwitz, C., Spataru, R., VanDeveer, C., Obersteiner, S.D., Van, E., Johnson, D. P., Andrews-Speed, P., Boersma, P., Hoff, H., & van Vuuren, M. (2018). Resource Nexus Perspectives towards the UN Sustainable Development Goals, Nature, 1. 737 - 743
Chamas, Z., Abou Najm, M., Al-Hindi, M., Yassine, A., & Khattar, R. (2021). Sustainable resource optimization under water-energy-food-carbon nexus. Journal of Cleaner Production, 278, 123894. doi: 10.1016/j.jclepro.2020.123894.
Cheng, Kun & Wei, Shuai & Ren, Yongtai & Fu, Qiang. (2021). Optimal Allocation of Agricultural Water Resources under the Background of China's Agricultural Water Price Reform–a Case Study of Heilongjiang Province. Applied Mathematical Modelling. 97. 10.1016/j.apm.2021.04.019.
Etedali, H. R., & Safari, F. (2023). Evaluation of the Influence of Different ET0 Estimation Methods in Simulation of Wheat Actual Evapotranspiration and Biomass by AquaCrop Model, 37(1), 1–14. (In Persian).
FAO. (2012). Coping with water scarcity An action framework for agriculture and food security.
FAO. (2022). The future of food and agriculture: Drivers and triggers./ The state of food and agriculture.
FAO. (2022). The future of food and agriculture: Drivers and triggers./ The state of food and agriculture.
Fu, C., & Sayed, T. (2022). Bayesian dynamic extreme value modeling for conflict-based real-time safety analysis. Analytic methods in accident research, 34, 100204.
Garcia-Vila, M., Morillo-Velarde, R., & Fereres, E. (2019). Modeling sugar beet responses to irrigation with AquaCrop for optimizing water allocation. Water (Switzerland), 11(9). doi: 10.3390/w11091918.
Hargreaves, George & Allen, Richard. (2003). History and Evaluation of Hargreaves Evapotranspiration Equation. Journal of Irrigation and Drainage Engineering-asce. 129. 10.1061/(ASCE)0733-9437(2003)129:1(53).
Houshmand Kouchi, D., Esmaili, K., Faridhosseini, A., Sanaei Nejad, S. H. & Khalili, D. (2018). Simulation of Climate Change Impacts Using Fifth Assessment Report Models under RCP Scenarios on Water Resources in the Upper Basin of Salman Farsi Dam. Iranian Journal of Irrigation and Drainage, ،13(2) 243-258. https://sid.ir/paper/131746/fa. (In Persian).
Jiménez, B., Oki, T., Arnell, N., Benito, G., Cogley, J.G., Döll, P., Jiang, T., Mwakalila, S.S. (2014). Freshwater resources. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change .Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp.229-269.
Jorenush, M.Hadi., BoroomandNasab, S., Naseri, A., Pakparvar, M., Taghvaeian, S. (2019). AquaCrop evaluation to simulate wheat production and plantig date in Fars province. Journal of Water and Irrigation Management,95-107. (In Persian).
Karamian, F., Mirakzadeh, A. A., & Azari, A. (2023). Application of multi-objective genetic algorithm for optimal combination of resources to achieve sustainable agriculture based on the water-energy-food nexus framework. Science of the Total Environment, 860, 160419. doi: 10.1016/j.scitotenv.2022.160419
Katerji, N., Campi, P., & Mastrorilli, M. (2013). Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region. Agricultural Water Management, 130, 14–26. doi: 10.1016/j.agwat.2013.08.005.
Mize, J.H., Cox, J.G. (1968). Essentials of simulation. Prentice Hall, Englewood Cliffs, NJ. New York, U.S.A.
Mizik, T. (2021). The Performance of the Agri-food Sector in the Recent Economic Crisis and during Covid-19 Pandemic. HighTech and Innovation, 2(3), 168-178.
Mkhabela, M. S., & Bullock, P. R. (2012). Performance of the FAO AquaCrop model for wheat grain yield and soil moisture simulation in Western Canada. Agricultural Water Management, 110, 16–24. doi: 10.1016/j.agwat.2012.03.009.
Nie, T., Tang, Y., Jiao, Y., Li, N., Wang, T., Du, C., Zhang, Z., Chen, P., Li, T., Sun, Z., & Zhu, S. (2022). Effects of Irrigation Schedules on Maize Yield and Water Use Efficiency under Future Climate Scenarios in Heilongjiang Province Based on the AquaCrop Model. Agronomy, 12(4), 810. https://doi.org/10.3390/agronomy12040810
Pereira, L. S. (2017). Water, Agriculture and Food: Challenges and Issues. Water Resources Management, 31(10), 2985-2999. doi: 10.1007/s11269-017-1664-z
Raes, D., Steduto, P., Hsiao, T.C. & Fereres, E. (2009), AquaCropThe FAO Crop Model to Simulate Yield Response to Water: II. Main Algorithms and Software Description. Agron. J., 101: 438-447. https://doi.org/10.2134/agronj2008.0140s
Rathjens, H., Bieger, K., Srinivasan, R., & Arnold, J. G. 2016.  “CMhyd User Manual Documentation for preparing simulated climate change data for hydrologic impact studies,”.
Saadati, Z., Delbari, M.,  Panahi, M., Amiri,. E. (2018). Simulation of sugar beet growth under water stress using AquaCrop model. journal of water and soil resources conservation, 7(3) 1-18.(In Persian).
Schaap, Marcel & Leij, Feike & Van Genuchten, Martinus. (2001). ROSETTA: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology. 251. 163-176. 10.1016/S0022-1694(01)00466-8.
Sundmaeker, H., & Verdouw, C., & Wolfert, S., & Pérez-Freire, L. (2016). Internet of Food and Farm 2020, 129–151. DOI:10.1201/9781003337966-4.
Vanuytrecht, E. & Hsiao, T. & Fereres, E. & Heng, Lee & García-Vila, Margarita & Mejías, Patricia. (2014). AquaCrop: FAO’S crop water productivity and yield response model. Environmental Modelling and Software. 62. 10.1016/j.envsoft.2014.08.005.
Vuković, A J., Vujadinović, M. P., Rendulić, S. M., Djurdjević, V. S., Ruml, M. M. and Babić, V. P. (2018) “Global Warming Impact on Climate Change in Serbia for The Period 1961-2100. by,” vol. 22, no. 6, pp. 2267-2280.
Yukimoto, S., Koshiro, T., Kawai, H., Oshima, N., Yoshida, K., Urakawa, Sh., Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yoshimura, H., Shindo, E., Mizuta, R., Ishii, M., Obata, A., Adachi, Y. (2020). MRI MRI-ESM2-0 model output prepared for CMIP6 DCPP. Version 2020. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.630
Zarrin, A., & Dadashi Roudbari, A. A. (2020). Projection the Long-Term Outlook Iran Future Temperature Based on the Output of The coupled model intercomparison project phase 6 (CMIP6). Journal of the Earth and Space Physics, Vol. 46, No. 3, Autumn 2020, P. 10. (In Persian).