شبیه‌سازی پاسخ ذرت به کود نیتروژن با استفاده از منحنی ترقیق نیتروژن بحرانی

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار بخش ابیاری و فیزیک خاک موسسه تحقیقات خاک و اب

چکیده

استفاده از مدل‌های گیاهی برای شبیه‌سازی پاسخ محصول به آب و نیتروژن نقش اساسی در ارتقاء مدیریت کشاورزی دارد. در اغلب این مدل‌ها از معادلات پیچیده برای شبیه‌سازی حرکت آب و نیتروژن در خاک و گیاه استفاده می‌شود که پارامترهای ورودی متعددی برای واسنجی نیاز دارند. در مدل AquaCrop با استفاده از یک روش نیمه کمّی، اثر تنش نیتروژن بر تعرق و عملکرد زیست‌توده در طول فصل رشد شبیه‌سازی می‌شود. این مدل قابلیت تعیین زمان و مقدار مناسب کود نیتروژن برای مدیریت دقیق مزرعه را ندارد. در مطالعه حاضر از یک روش مستقیم مبتنی بر منحنی ترقیق نیتروژن بحرانی برای شبیه‌سازی اثر کمبود نیتروژن بر تعرق و عملکرد زیست‌توده استفاده شد. هدف اصلی در این مطالعه، ارزیابی کارایی این روش و مقایسه نتایج آن با روش نیمه کمّی بود. برای این منظور از داده‌های بدست آمده در تیمارهای تحت تنش نیتروژن طی دو سال کشت ذرت استفاده شد. مقادیر زیست‌توده و غلظت نیتروژن گیاه در طول فصل رشد اندازه‌گیری شدند. نتایج نشان دادند که شاخصRRMSE (ریشه متوسط مربعات خطای نسبی) در شبیه‌سازی زیست‌توده به روش مستقیم، به طور متوسط برای هر تیمار، چهار درصد نسبت به روش نیمه کمّی کمتر بود. همچنین، افزایش تنش نیتروژن موجب افزایش خطای شبیه‌سازی زیست‌توده شد. به‌طوری که RRMSE برای شبیه‌سازی زیست‌توده به روش مستقیم در تیمارهای تحت بیشترین تنش 48/26 و 96/30 و در تیمارهای بدون تنش 57/9 و 75/15 درصد بود. این نتایج نشان می‌دهند که کاربرد مفهوم منحنی ترقیق نیتروژن بحرانی در مدل‌های شبیه‌ساز رشد گیاه، برآورد دقیق‌تری از شرایط محصول تحت تنش نیتروژن ارائه می‌دهد.  

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Simulating Maize response to Nitrogen fertilizer using the critical Nitrogen dilution curve

نویسنده [English]

  • Arash Ranjbar
Assistant professor irrigation and soil physic department in soil and water research institute
چکیده [English]

 
The application of crop models to simulate crop responses to water and nitrogen (N) is crucial for improving agricultural management. The majority of these models involve complex equations and require several input parameters for calibration. AquaCrop simulates crop response to different N levels using a semi-quantitative approach, which simulates the effect of N stress on transpiration and biomass production during the growing season. This model does not provide information on the optimal timing and quantity of N fertilizer application for efficient farm management. In the present study, a direct simulation approach based on the concept of a critical nitrogen curve was applied to simulate the effect of N deficiency on transpiration and biomass production. The main objective of this study was to evaluate a direct simulation approach and compare its results with those derived from the semi-quantitative approach. For this purpose, experimental data were collected from two years of maize cultivation. Biomass and plant nitrogen concentrations were measured during the growing season. The results showed that the RRMSE (relative root mean square error) index in biomass simulation by the direct method was, on average, 4% lower for each treatment compared to the semi-quantitative approach. In addition, increased N stress led to increased errors in simulating biomass. Thus, the RRMSE for biomass simulation using the direct method was 26.48 % and 30.96% for treatments under the highest stress, and 9.57% and 15.75 % for non-stressed treatments. In general, these findings show that integrating the critical nitrogen concentration concept into crop models provides more accurate estimates for crops under nitrogen stress.

کلیدواژه‌ها [English]

  • AquaCrop model
  • Critical nitrogen curve
  • Nitrogen stress
  • Semi-quantitative approach

EXTENDED ABSTRACT

 

Background and purpose:

The application of crop models to simulate crop responses to water and nitrogen (N) is crucial for improving agricultural management. The majority of these models involve complex equations and require several input parameters for calibration. They are used to simulate the water flow and N transport in soil and plants. AquaCrop as a user-friendly model, simulates the crop response to different amounts of N using a semi-quantitative approach which simulates the effect of N stress on transpiration and biomass production during the growing season. In this method, the effect of N deficiency on biomass production is simulated based on several constant reduction coefficients for each stress level during the growing season. This model cannot determine the proper time and amount of N fertilizer for efficient farm management. In the present study, a direct simulation approach based on the concept of a critical nitrogen curve was applied to simulate the effect of N deficiency on transpiration and biomass production. In this method, biomass values were simulated based on the effect of N deficiency on canopy resistance (rc), transpiration (Tr), and normalized water productivity (WP*) parameters, during the growing season. The main objective of this study was to evaluate a direct simulation approach and compare its results with the AquaCrop semi-quantitative approach.

Materials and methods:

 For this purpose, field experiments were conducted at the research farm located in Tehran, during the 2015 and 2016 growing seasons. Five N treatments were investigated including no nitrogen (N0), 50(N1), 100(N2), 150(N3) and 200 kg N. ha−1 (N4) for each year. Biomass and plant nitrogen concentrations were measured during the growing season.

Findings: 

The results showed an inverse relationship between N stress and both Tr and WP*. In other words, increasing N stress led to decreased values of Tr and WP*. Moreover, in the direct simulation approach, WP* changes during the growing season based on the nitrogen nutrition index. In the AquaCrop model, WP* is obtained from a linear regression equation, which is assumed to be constant during the growing season. This factor may cause more errors in biomass simulation. The RRMSE (relative root mean square error) index in biomass simulation by the direct method was, on average, 4% lower for each treatment compared to the semi-quantitative approach. In addition, increased N stress led to increased errors in simulating biomass. Thus, the RRMSE for biomass simulation using the direct method was 26.48 % and 30.96% for treatments under the highest stress, and 9.57% and 15.75 % for non-stressed treatments.

Conclusion:

In general, these findings show that integrating the critical nitrogen concentration concept into crop models provides more accurate estimates for crops under nitrogen stress. Therefore, the integration of a direct simulation approach and critical nitrogen concentration concept proves highly effective in examining nitrogen management scenarios for agriculture.

Author Contributions

The author contributed to the conceptualization of the article and writing of the original and subsequent drafts.

Data Availability Statement

Data available on request from the author.

Acknowledgements

The author would like to thank all participants of the present study.

Ethical considerations

The author avoided from data fabrication and falsification.

Conflict of interest

The author declare no conflict of interest.

 

 

Akumaga, U., Tarhule, A., & Yusuf, A. A. (2017). Validation and testing of the FAO AquaCrop model under different levels of nitrogen fertilizer on rainfed maize in Nigeria, West Africa. Agricultural and forest meteorology, 232, 225-234.
Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300(9), D05109.
Guo, D., Zhao, R., Xing, X., & Ma, X. (2020). Global sensitivity and uncertainty analysis of the AquaCrop model for maize under different irrigation and fertilizer management conditions. Archives of Agronomy and Soil Science, 66(8), 1115-1133.
Hsiao, T. C., Heng, L., Steduto, P., Rojas‐Lara, B., Raes, D., & Fereres, E. (2009). AquaCrop—the FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agronomy Journal, 101(3), 448-459.
Patrignani, A., & Ochsner, T. E. (2015). Canopeo: A powerful new tool for measuring fractional green canopy cover. Agronomy journal, 107(6), 2312-2320.
Plénet, D., & Lemaire, G. (1999). Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops. Determination of critical N concentration. Plant and soil, 216, 65-82.
Raes, D., Steduto, P., Hsiao, T. C., & Fereres, E. (2018). Reference manual for AquaCrop, version 6.0/6.1. AquaCrop Website http://www. fao. org/nr/water/aquacrop. html.
Ran, H., Kang, S., Hu, X., Li, F., Du, T., Tong, L., ... & Parsons, D. (2019). Newly developed water productivity and harvest index models for maize in an arid region. Field crops research, 234, 73-86.
Rahimikhoob, H., Sohrabi, T., & Delshad, M. (2021). Simulating crop response to Nitrogen-deficiency stress using the critical Nitrogen concentration concept and the AquaCrop semi-quantitative approach. Scientia Horticulturae, 285, 110194.
Ranjbar, A., Rahimikhoob, A., Ebrahimian, H., & Varavipour, M. (2019). Assessment of the AquaCrop model for simulating maize response to different nitrogen stresses under semi-arid climate. Communications in soil science and plant analysis, 50(22), 2899-2912.
Ranjbar, A., Rahimikhoob, A., Ebrahimian, H., & Varavipour, M. (2020). Determination of critical nitrogen dilution curve based on canopy cover data for summer maize. Communications in Soil Science and Plant Analysis, 51(17), 2244-2256.
Shan-Chao, Y. U. E., Fu-Lai, S. U. N., Qing-Feng, M. E. N. G., Rong-Fang, Z. H. A. O., Fei, L. I., Xin-Ping, C. H. E. N., ... & Zhen-Ling, C. U. I. (2014). Validation of a critical nitrogen curve for summer maize in the North China Plain. Pedosphere, 24(1), 76-83.
Steduto, P. (2003). Biomass water-productivity. Comparing the growth-Engines of Crop Models. FAO expert consultation on crop water productivity under deficient water supply, 26-28.
Steduto, P., Hsiao, T. C., Raes, D., & Fereres, E. (2009). AquaCrop—The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agronomy journal, 101(3), 426-437.
Hatfield, J. L., & Allen, R. G. (1996). Evapotranspiration estimates under deficient water supplies. Journal of irrigation and drainage engineering, 122(5), 301-308.
Stockle, C. O., & Debaeke, P. (1997). Modeling crop nitrogen requirements: a critical analysis. European Journal of Agronomy, 7(1-3), 161-169.
Stöckle, C. O., Donatelli, M., & Nelson, R. (2003). CropSyst, a cropping systems simulation model. European journal of agronomy, 18(3-4), 289-307.
Van Gaelen, H., Tsegay, A., Delbecque, N., Shrestha, N., Garcia, M., Fajardo, H., ... & Raes, D. (2015). A semi-quantitative approach for modelling crop response to soil fertility: evaluation of the AquaCrop procedure. The Journal of Agricultural Science, 153(7), 1218-1233.
Van Keulen, H. V., & Seligman, N. G. (1987). Simulation of water use, nitrogen nutrition and growth of a spring wheat crop (pp. 310-pp).
Vanuytrecht, E., Raes, D., & Willems, P. (2014). Global sensitivity analysis of yield output from the water productivity model. Environmental Modelling & Software, 51, 323-332.