مطالعه آزمایشگاهی مقاومت جریان در حضور پوشش گیاهی صلب و پیش‌بینی آن با مدل‌های هوشمند

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی آبیاری و آبادانی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

2 گروه علوم و مهندسی آب، دانشگاه اراک، اراک، ایران

چکیده

تعیین ضرایب مقاومت و کاهش عدم قطعیت در انتخاب این پارامتر یکی از مهمترین عوامل دستیابی به مشخصات جریان در رودخانهها و مجاری روباز است. از این رو، انتخاب مطلوب ضریب زبری در شرایط مختلف مانند وجود پوشش گیاهی از جمله موضوعات موردتوجه پژوهشگران بوده است. در این پژوهش، ابتدا ضریب زبری مانینگ در یک فلوم آزمایشگاهی با حضور آرایشهای مختلف پوشش گیاهی تعیین شد. سپس توانایی پنج مدل هوشمند شامل GMDH، ANN-RBF،RT ، ANFIS و ANFIS-PSO در پیش‌بینی ضریب زبری مانینگ ارزیابی شد. مدل‌ها در محیط نرم‌افزار MATLAB  کدنویسی شد. با توجه به ایجاد جریان متغیر تدریجی در کانال آزمایشگاهی،  نیمرخ سطح آب به دست آمده از طریق حل به روش اویلر، با مقادیر اندازه‌گیری شده در آزمایشگاه مقایسه شد. نتایج نشان داد که تطابق قابل‌قبول بین پروفیل سطح آب آزمایشگاهی و برآوردهای انجام‌شده با روش اویلر وجود دارد. ارزیابی نتایج مدل‌ها بر اساس تحلیل آماری به‌کاررفته نشان‌ داد که مدل ANFIS - PSO عملکرد بهتری نسبت به سایر مدل‌ها در پیش‌بینی ضریب مانینگ دارد، به‌طوری که نتایج این مدل RMSE=0.0096، R2=0.9984 و KGE=0.9922 در مرحله آموزش و RMSE=0.0099، R2=0.9982 و KGE=0.9873 در مرحله آزمون است. در مراتب بعد، از لحاظ دقت به‌ترتیب مدل‌های‌ ANN-RBF، GMDH، ANFIS و RT قرار می-گیرند. با ارزیابی نتایج ترکیب‌های مختلف در مدل‌سازی مشخص شد، سه پارامتر تراکم پوشش گیاهی (D)، آرایش پوشش گیاهی (N) و عدد رینولدز (Re) به ترتیب تاثیر بیشتری در ارائه نتایج درست داشتند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental study of flow resistance in the presence of rigid vegetation and its prediction with intelligent models

نویسندگان [English]

  • yaser mehri 1
  • Mohammad Hosein Omid 1
  • Salah Kouchakzadeh 1
  • Mohsen Nasrabadi 2
1 Depratment of Irrigation and Reclamation Engineering, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
2 Department of Water Science and Engineering, Arak University, Arak, Iran
چکیده [English]

Determining the resistance coefficients and reducing the uncertainty in selecting this parameter is one of the most essential factors in achieving the flow characteristics in rivers and open channels. Therefore, the appropriate selection of roughness coefficient in different conditions, such as vegetation, has been one of the important research topics. This research first determined the Manning’s roughness coefficient in a laboratory flume with different vegetation arrangements. Then, the ability of five intelligent models, including GMDH, ANN-RBF, RT, ANFIS, and ANFIS-PSO, to predict the Manning’s roughness coefficient was evaluated. The models were coded in the MATLAB software. Due to the creation of a gradually varied flow in the laboratory flume, the water level profile obtained through Euler's method was compared with the experimental values. The results showed an acceptable agreement between the experimental water level profiles and the estimates made by Euler's method. The evaluation of the results based on the statistics showed that the ANFIS-PSO model performs better than other models in predicting the Manning’s coefficient. Hence, the results of this model are RMSE=0.0096, R2=0.9984 and KGE=0.9922 in the training phase and RMSE=0.0099, R2= 0.9982 and KGE=0.9873 in the test phase. The ANN-RBF, GMDH, ANFIS, and RT models are in the next ranks. By evaluating the results of different combinations in modeling, it was found that three parameters of vegetation density (D), vegetation arrangement (N) and Reynolds number (Re) had, respectively, significant effect in estimating the correct results.

کلیدواژه‌ها [English]

  • machine learning
  • laboratory investigation
  • modeling
  • gradually varied flow
  • roughness

Experimental study of flow resistance in the presence of rigid vegetation and its prediction with intelligent models

EXTENDED ABSTRACT

 

Introduction

The presence of vegetation in rivers and waterways is one of the main factors that increases the roughness coefficient, therefore, it should be considered in the designs. Research related to vegetation in waterways has often been conducted with the assumption of uniform flow conditions (Zhang et al., 2019). In addition, limited research has been done on different types of vegetation. Therefore, it is necessary to investigate Manning's coefficient in the presence of vegetation under gradually varied flow conditions.

This research aims to provide a high-accuracy model for determining the Manning's coefficient of the bed with different arrangements of rigid vegetation in the gradually varied flow conditions. There are various methods for calculating Manning's coefficient, including laboratory and intelligent models. Although intelligent models have high accuracy and low-cost, which are faster than laboratory works, experimental data is needed to train these models. Considering the need to accurately calculate the Manning’s coefficient in river beds for proper design, using intelligent methods to determine the Manning’s coefficient can be helpful. Based on the results of previous research, five models of GMDH, ANN-RBF, RT, ANFIS, and ANFIS-PSO were used to predict the Manning’s coefficient.

Methodology

In this research, 86 experiments were conducted in a flume with vegetation with different arrangements under the gradually varied flow conditions, so that these data can be used for calibration and validation of the models. Then, five models of GMDH, ANN-RBF, RT, ANFIS, and ANFIS-PSO were used to evaluate the Manning’s coefficient. All models were coded in the MATLAB software. All parameters affecting Manning's coefficient were extracted and used as input and output parameters in modeling. Also, the experiments of this research were carried out in the central water research laboratory of the Department of Irrigation and Reclamation Engineering, University of Tehran. The examined flume has a rectangular cross-section with a width and height of 0.5 m and a length of 12 m, respectively. The bottom of the flume is made of plexiglass, and its wall is made of glass. The slope of this flume is constant and equal to 0.002. The laboratory's circulating water distribution system was used to supply the stream water used in this channel.

Results and Discussion

The results showed that there is an acceptable agreement between the laboratory water surface profile and the predicted results by Euler's method. The evaluation of the results based on some important statistics showed that the ANFIS-PSO model has a better performance than other models in predicting the Manning’s coefficient. Hence, the results of this model are RMSE=0.0096, R2=0.9984 and KGE=0.9922 in the training phase, and RMSE=0.0099, R2= 0.9982 and KGE=0.9873 in the test phase. In the following order, the ANN-RBF model with the accuracy of RMSE=0.0157, R2=0.9962 and KGE=0.9663, the GMDH model with the accuracy of RMSE=0.0246, R2=0.9894 and KGE=0.9595, the ANFIS model with the accuracy of RMSE=0.0328, R2=0.9826 and KGE=0.9302 and the RT model with the accuracy of RMSE=0.0538, R2=0.9558 and KGE=0.9106 are in the test phase. Considering that different combinations were used in the modeling, it was determined by evaluating the results that three parameters, respectively, vegetation density (D), vegetation arrangement (N), and Reynolds number (Re), had a greater effect in providing correct results.

Conclusions

Using the Euler's numerical method, it was shown that the laboratory data matched the water surface profile calculated by this method. By examining the results, it was found that the ANFIS-PSO model has the most accuracy compared to other models. The lowest performance was assigned to RT. The parameters of vegetation density (D), vegetation arrangement (N), and Reynolds number (Re) played the most crucial role in the development of models. Therefore, the ANFIS-PSO model should be used to predict the Manning’s coefficient in the mentioned conditions.

Abbaszadeh, H., Daneshfaraz, R., Sume, V. & Abraham, J. (2024). Experimental investigation and application of soft computing models for predicting flow energy loss in arc-shaped constrictions. AQUA—Water Infrastructure, Ecosystems and Society, p.jws2024010.
Bahramifar, A., Shirkhani, R. & Mohammadi, M. (2013). An anfis-based approach for predicting the manning roughness coefficient in alluvial channels at the bank-full stage. International Journal of Engineering, 26(2), 177-186.
Breiman L. Friedman J. H. Olshen R. A. Stone C. J. (1984). Classification and Regression Trees. Cole Statistics/Probability Series. Wadsworth & Brooks, New York, NY.
Cheng, N.S. & Nguyen, H.T. (2011). Hydraulic radius for evaluating resistance induced by simulated emergent vegetation in open-channel flows. Journal of hydraulic engineering137(9), 995-1004.
Cornacchia, L., Folkard, A., Davies, G., Grabowski, R.C., van de Koppel, J., van der Wal, D., Wharton, G., Puijalon, S. & Bouma, T.J. (2019). Plants face the flow in V formation: A study of plant patch alignment in streams. Limnology and oceanography64(3), 1087-1102.
Coscarella, F., Penna, N., Ferrante, A.P., Gualtieri, P. & Gaudio, R. (2021). Turbulent flow through random vegetation on a rough bed. Water13(18), 2564.
García Díaz, R. (2005). Analysis of Manning coefficient for small‐depth flows on vegetated beds. Hydrological Processes: An International Journal, 19(16), 3221-3233.
Ghorbani, M.A., Zadeh, H.A., Isazadeh, M. & Terzi, O. (2016). A comparative study of artificial neural network (MLP, RBF) and support vector machine models for river flow prediction. Environmental Earth Sciences, 75, 1-14.
Gu, F.F., Ni, H.G. & Qi, D.M. (2007). Roughness coefficient for unsubmerged and submerged reed. Journal of Hydrodynamics, 19(4), 421-428.
Hassanzadeh, Y. & Abbaszadeh, H. (2023). Investigating Discharge Coefficient of Slide Gate-Sill Combination Using Expert Soft Computing Models. Journal of Hydraulic Structures, 9(1), pp.63-80. (In Persian).
Henderson, F.M. (1996). Open channel flow.
Kelleher, J.D., Tierney, B. & Tierney, B. (2018). Data science: an introduction.
Kisi, O., Haktanir, T., Ardiclioglu, M., Ozturk, O., Yalcin, E. & Uludag, S. (2009). Adaptive neuro-fuzzy computing technique for suspended sediment estimation. Advances in Engineering Software, 40(6), pp.438-444.
Ladson, A., Anderson, B., & Rutherfurd, I. (2002). Towards an Australian Handbook of Stream Roughness Coefficients. In Hydrology and Water Resources Symposium. 348-355. Barton, ACT: Institution of Engineers, Australia.
Li, Y., Wang, Y., Anim, D.O., Tang, C., Du, W., Ni, L., Yu, Z. & Acharya, K. (2014). Flow characteristics in different densities of submerged flexible vegetation from an open-channel flume study of artificial plants. Geomorphology204, 314-324.
Marashi, A., Kouchakzadeh, S. & Yonesi, H.A. (2023). Rotary gate discharge determination for inclusive data from free to submerged flow conditions using ENN, ENN–GA, and SVM–SA. Journal of Hydroinformatics. 25(4), 1312-1328.
Mehri, Y., Nasrabadi, M. & Omid, M.H. (2021). Prediction of suspended sediment distributions using data mining algorithms. Ain Shams Engineering Journal, 12(4), 3439-3450.
Mehri, Y., Soltani, J. & Khashehchi, M. (2019). Predicting the coefficient of discharge for piano key side weirs using GMDH and DGMDH techniques. Flow Measurement and Instrumentation, 65, 1-6.
Meng, X., Zhou, Y., Sun, Z., Ding, K. & Chong, L. (2021). Hydraulic characteristics of emerged rigid and submerged flexible vegetations in the riparian zone. Water, 13(8), 1057.
Muhammad, M.M., Yusof, K.W., Mustafa, M.R.U., Zakaria, N.A. & Ab Ghani, A. (2018). Prediction models for flow resistance in flexible vegetated channels. International journal of river basin management16(4), 427-437.
Noarayanan, L., Murali, K. & Sundar, V. (2012). Manning’s ‘n’co-efficient for flexible emergent vegetation in tandem configuration. Journal of hydro-environment research6(1), 51-62.
Pradhan, A. and Khatua, K.K. (2018). Gene expression programming to predict Manning’sn in meandering flows. Canadian Journal of Civil Engineering45(4), 304-313.
Roushangar, K., Saghebian, S.M. & Mouaze, D. (2017). Predicting characteristics of dune bedforms using PSO-LSSVM. International Journal of Sediment Research32(4), 515-526.
Roushangar, K. & Shahnazi, S. (2019). Bed load prediction in gravel-bed rivers using wavelet kernel extreme learning machine and meta-heuristic methods. International Journal of Environmental Science and Technology, 16, pp.8197-8208.
Wu, F. S. (2008). Characteristics of flow resistance in open channels with non-submerged rigid vegetation. Journal of Hydrodynamics, 20(2), 239-245.
Xu, W.G., Zhang, H.Y., Wang, Z.Y. and Huang, W.P. (2012). A study of manning coefficient related with vegetation density along the vegetated channel. Applied Mechanics and Materials, 212, 744-747.
Yarahmadi, M.B., Parsaie, A., Shafai-Bejestan, M., Heydari, M. & Badzanchin, M. (2023). Estimation of Manning roughness coefficient in alluvial rivers with bed forms using soft computing models. Water Resources Management, 1-22.
Zhang, H., Wang, Z., Xu, W. & Wang, H. (2019). Determination of emergent vegetation effects on Manning’s coefficient of gradually varied flow. IEEE Access7, 146778-146790.