Ahmad, M., Usman, A. R., Al-Faraj, A. S., Ahmad, M., Sallam, A., & Al-Wabel, M. I. (2018). Phosphorus-loaded biochar changes soil heavy metals availability and uptake potential of maize (Zea mays L.) plants. Chemosphere, 194, 327-339.
Akmal, M., & Jianming, X. (2009). Microbial biomass and bacterial community changes by Pb contamination in acidic soil. J Agric Biol Sci, 1, 30-37.
Alazzaz, A., Rafique, M. I., Al-Swadi, H., Ahmad, M., Alsewaileh, A. S., Usman, A. R., Al-Wabel, MI., & Al-Farraj, A. S. (2023). Date palm-magnetized biochar for in-situ stabilization of toxic metals in mining-polluted soil: evaluation using single-step extraction methods and phytoavailability. International Journal of Phytoremediation, 1-12.
AL-Huqail, A. A. (2022). Biochar derived from cow bones and corn stalks reduced the release of Cd and Pb and the human health risk index of quinoa grown in contaminated soils. Journal of Soil Science and Plant Nutrition, 22(4), 4024-4034.
Ali, A., Guo, D., Zhang, Y., Sun, X., Jiang, S., Guo, Z., Huang, H., Liang, W., Li, R., & Zhang, Z. (2017). Using bamboo biochar with compost for the stabilization and phytotoxicity reduction of heavy metals in mine-contaminated soils of China. Scientific reports, 7(1), 2690.
Archanjo, B. S., Mendoza, M. E., Albu, M., Mitchell, D. R., Hagemann, N., Mayrhofer, C., Mai, T.L.A., Weng, Z., Kappler, A., Behrens, S., & Munroe, P. (2017). Nanoscale analyses of the surface structure and composition of biochars extracted from field trials or after co-composting using advanced analytical electron microscopy. Geoderma, 294, 70-79.
ATSDR. (2015). Priority List of Hazardous Substances. Agency for Toxic Substances and Disease Registry. Public Health Service, United States Department of Health and Human Services, Atlanta, Georgia.
Beesley, L., Moreno-Jiménez, E., & Gomez-Eyles, J. L. (2010). Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environmental pollution, 158(6), 2282-2287.
Bian, R., Joseph, S., Cui, L., Pan, G., Li, L., Liu, X., & Donne, S. (2014). A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment. Journal of Hazardous Materials, 272, 121-128.
Bousdra, T., Papadimou, S. G., & Golia, E. E. (2023). The use of biochar in the remediation of pb, cd, and cu-contaminated soils. The impact of biochar feedstock and preparation conditions on its remediation capacity. Land, 12(2), 383.
Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American chemical society, 60(2), 309-319.
Chen, X., He, H. Z., Chen, G. K., & Li, H. S. (2020). Effects of biochar and crop straws on the bioavailability of cadmium in contaminated soil. Scientific Reports, 10(1), 9528.
Cimò, G., Kucerik, J., Berns, A. E., Schaumann, G. E., Alonzo, G., & Conte, P. (2014). Effect of heating time and temperature on the chemical characteristics of biochar from poultry manure. Journal of agricultural and food chemistry, 62(8), 1912-1918.
Cui, J., Jin, Q., Li, Y., & Li, F. (2019). Oxidation and removal of As (III) from soil using novel magnetic nanocomposite derived from biomass waste. Environmental Science: Nano, 6(2), 478-488.
Cuixia, Y., Yingming, X., Lin, W., Xuefeng, L., Yuebing, S., & Hongtao, J. (2020). Effect of different pyrolysis temperatures on physico-chemical characteristics and lead (II) removal of biochar derived from chicken manure. RSC advances, 10(7), 3667-3674.
Dianat Maharluei, Z., Fekri, M., Mahmoodabadi, M., Saljooqi, A., & Hejazi, M. (2020). Investigating the Effect of Engineered Biochars on Lead Desorption Kinetics in Contaminated Calcareous Soils. Water and Soil, 34(5), 1109-1124. doi: 10.22067/jsw.v34i5.86783.
Ding Z, Alharbi S., Ali, E. F., Ghoneim, AM., Hadi Al Fahd, M., Wang, G., Eissa, MA. (2022) Effect of phosphorus-loaded biochar and nitrogen-fertilization on release kinetic of toxic heavy metals and tomato growth. Inter
J Phytorem 24:156–165. https://doi.org/10. 1080/15226514.2021.1929825.
European Union. (EU). (2002) Heavy Metals in wastes, European commission on environment. https://ec.europa.eu/environment/waste/ studies/pdf/heavymetalsreport.pdf. Accessed 7 July 2018.
Fang, Y., Sun, X., Yang, W., Ma, N., Xin, Z., Fu, J., Liu, X., Liu, M., Mariga, A.M., Zhu, X. & Hu, Q. (2014). Concentrations and health risks of lead, cadmium, arsenic, and mercury in rice and edible mushrooms in China. Food chemistry, 147, 147-151.
Fangueiro, D., Bermond, A., Santos, E., Carapuça, H., & Duarte, A. (2005). Kinetic approach to heavy metal mobilization assessment in sediments: choose of kinetic equations and models to achieve maximum information. Talanta, 66(4), 844-857.
Feng, C., Chen, Y., Zhang, S., Wang, G., Zhong, Q., Zhou, W., Xu, X., & Li, T. (2020). Removal of lead, zinc and cadmium from contaminated soils with two plant extracts: Mechanism and potential risks. Ecotoxicology and environmental safety, 187, 109829.
Gan, Y., Huang, X., Li, S., Liu, N., Li, Y. C., Freidenreich, A., Wang, W.X., Wang, R.Q., & Dai, J. (2019). Source quantification and potential risk of mercury, cadmium, arsenic, lead, and chromium in farmland soils of Yellow River Delta. Journal of cleaner production, 221, 98-107.
Gee, G.W., & Bauder, J.W. (1986). Particle size analysis. In: Klute A. (ed.) Methods of Soil Analysis. Part l. edition. Agron. Monogr. 9. ASA and SSSA, Madison. Wisconsin. pp. 404-407.
Gunatilake, S. K. (2015). Methods of removing heavy metals from industrial Journal of Multidisciplinary Engineering Science Studies. 1(1): 12-18.
Han, F. X., & Banin, A. (2000). Long‐term transformations of cadmium, cobalt, copper, nickel, zinc, vanadium, manganese, and iron in arid‐zone soils under saturated condition. Communications in soil science and plant analysis, 31(7-8), 943-957.
Han, Y., Cao, X., Ouyang, X., Sohi, S. P., & Chen, J. (2016). Adsorption kinetics of magnetic biochar derived from peanut hull on removal of Cr (VI) from aqueous solution: effects of production conditions and particle size. Chemosphere, 145, 336-341.
Havlin, J. L., Westfall, D. G., & Olsen, S. R. (1985). Mathematical models for potassium release kinetics in calcareous soils. Soil Science Society of America Journal, 49(2), 371-376.
He, Z., Shentu, J., Yang, X., Baligar, V. C., Zhang, T., & Stoffella, P. J. (2015). Heavy metal contamination of soils: sources, indicators and assessment.
Inyang, M., Gao, B., Yao, Y., Xue, Y., Zimmerman, A. R., Pullammanappallil, P., & Cao, X. (2012). Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresource technology, 110, 50-56.
Jones, D. L., Hodge, A., & Kuzyakov, Y. (2004). Plant and mycorrhizal regulation of rhizodeposition. New phytologist, 163(3), 459-480.
Jopony, M., & Young, S. D. (1987). A constant potential titration method for studying the kinetics of Cu2+ desorption from soil and clay minerals. Journal of soil science, 38(2), 219-228.
Kabata-Pendias, A., & Pendias, H. (1992). Trace Elements in Soils and Plants. CRC Press, Boca Raton, Florida, USA
Kabiri, P., Motaghian, H., & Hosseinpur, A. (2020). Impact of biochar on release kinetics of Pb (II) and Zn (II) in a calcareous soil polluted with mining activities. Journal of Soil Science and Plant Nutrition, 21, 22-34.
khaefi, F., Hosseinpur, A., & Motaghian, H. (2021). Short-Term Effect of Sewage Sludge Biochar on Availability and Fractionation of Pb in a Contaminated Calcareous Soil. Iranian Journal of Soil Research, 34(4), 501-513.(In persian). doi: 10.22092/ijsr.2021.352675.570.
Kim, H.S., Kim, K.R,. Kim, H.J., Yoon, J.H., Yang, J.E., Ok, Y.S., Owens, G., & Kim K.H. 2015. Effect of biochar on heavy metal immobilization and uptake by lettuce (Lactuca sativa L.) in agricultural soil. Environmental Earth Sciences, 74:1249-1259.
Kotoky, P., Bora, B. J., Baruah, N. K., Baruah, J., Baruah, P., & Borah, G. C. (2003). Chemical fractionation of heavy metals in soils around oil installations, Assam. Chemical Speciation & Bioavailability, 15(4), 115-126.
Kouassi, N. G. L. B., Yao, K. M., Sangare, N., Trokourey, A., & Metongo, B. S. (2019). The mobility of the trace metals copper, zinc, lead, cobalt, and nickel in tropical estuarine sediments, Ebrie Lagoon, Côte d’Ivoire. Journal of soils and sediments, 19, 929-944.
Lebrun, M., Nandillon, R., Miard, F., Bourgerie, S., & Morabito, D. (2022). Biochar assisted phytoremediation for metal (loid) contaminated soils. In Assisted Phytoremediation (pp. 101-130). Elsevier.
Leoppert, R.H., & Suarez, D.L. (I996). Carbonate and gypsum. In: Sparks D.L. (ed.) Methods of Soil Analysis. SSSA, Madison. pp. 437-447.
Li, C., Zhou, K., Qin, W., Tian, C., Qi, M., Yan, X., & Han, W. (2019). A review on heavy metals contamination in soil: effects, sources, and remediation techniques. Soil and Sediment Contamination: An International Journal, 28(4), 380-394.
Li, J. S., Wang, P., & Liu, L. (2013). Environmental prediction model for dynamic release of Lead in contaminated soil under washing Remediation. EJGE, 18, 55-70.
Lindsay, W.L. & Norvell, W.A. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal. 42: 421-428.
Lucchini, P., Quilliam, R. S., DeLuca, T. H., Vamerali, T., & Jones, D. L. (2014). Increased bioavailability of metals in two contrasting agricultural soils treated with waste wood-derived biochar and ash. Environmental Science and Pollution Research, 21, 3230-3240.
Maestri, E., Marmiroli, M., Visioli, G., & Marmiroli, N. (2010). Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environmental and Experimental Botany, 68(1), 1-13.
Martin, H.W. & Sparks, D.L. (1983). Kinetics of non exchangeable potassium release from two coastal plain soils. Soil Science Society of America Journal 47: 883-887.
Matsumoto, S., Kasuga, J., Taiki, N., Makino, T., & Arao, T. (2015). Inhibition of arsenic accumulation in Japanese rice by the application of iron and silicate materials. Catena, 135, 328-335.
Mohseni, A., Reyhanitabar, A., Najafi, N., Oustan, S., & Bazargan, K. (2018). Kinetics of DTPA extraction of Zn, Pb, and Cd from contaminated calcareous soils amended with sewage sludge.
Arabian Journal of Geosciences,
11, 1-9. https://doi.org/10.1007/s12517-018-3735-8
Molnár, M., Vaszita, E., Farkas, É., Ujaczki, É., Fekete-Kertész, I., Tolner, M., Klebercz, O.; Kirchkeszner, C.; Gruiz, K.; Uzinger, N.; & Feigl, V. (2016). Acidic sandy soil improvement with biochar—A microcosm study. Science of the Total Environment, 563, 855-865.
Moore, F., Nematollahi, M. J., & Keshavarzi, B. (2015). Heavy metals fractionation in surface sediments of Gowatr bay-Iran. Environmental monitoring and assessment, 187, 1-14.
Motaghian, H. R., & Hosseinpur, A. R. (2013). Zinc desorption kinetics in wheat (Triticum Aestivum L.) rhizosphere in some sewage sludge amended soils. Journal of soil science and plant nutrition, 13(3), 664-678.
Motaghian, H. R., & Hosseinpur, A. R. (2014). Zinc desorption kinetics in bean (Phaseolus vulgaris L.) rhizosphere in sewage sludge-amended calcareous soils. Environmental earth sciences, 71, 965-973.
Nelson, D. W., & Sommers, L. E. (1996). Carbon, organic carbon, and organic matter. In: Sparks D.L. (ed) Methods of Soil Analysis. Soil Science Society of America, Madison. pp. 961-1010.
Ogundiran, M. B., Lawal, O. O., & Adejumo, S. A. (2015). Stabilisation of Pb in Pb smelting slag-contaminated soil by compost-modified biochars and their effects on maize plant growth. Journal of Environmental Protection, 6(08), 771.
Pavlatou, A., & Polyzopoulos, N. A. (1988). The role of diffusion in the kinetics of phosphate desorption: the relevance of the Elovich equation. Journal of Soil Science, 39(3), 425-436.
Penido, E.S., Martins, G.C., Matos, T.B., Mendes, L., Melo, C.A., Guimarães, I.R., & Guilherme., L.R. G. 2019. Combining biochar and sewage sludge for immobilization of heavy metals in mining soils. Ecotoxicology and Environmental Safety Journals. 172: 326–333.
Pourrut, B., Shahid, M., Dumat, C., Winterton, P., & Pinelli, E. (2011). Lead uptake, toxicity, and detoxification in plants. Reviews of environmental contamination and toxicology volume 213, 113-136.
Rafique, M. I., Usman, A. R., Ahmad, M., Sallam, A., & Al-Wabel, M. I. (2020). In situ immobilization of Cr and its availability to maize plants in tannery waste–contaminated soil: effects of biochar feedstock and pyrolysis temperature. Journal of Soils and Sediments, 20, 330-339.
Reyhanitabar, A., & Gilkes, R. J. (2010). Kinetics of DTPA extraction of zinc from calcareous soils. Geoderma, 154(3-4), 289-293. https://doi.org/10. 1016/j.geoderma.2009.10.016
Rhoades, J.D. 1996. Salinity: Electrical conductivity and total dissolved solids. In: Methods of Soil Analysis. SSSA, Madison. pp. 417-435.
Serrano, M. F., López, J. E., Henao, N., & Saldarriaga, J. F. (2024). Phosphorus-Loaded Biochar-Assisted Phytoremediation to Immobilize Cadmium, Chromium, and Lead in Soils. ACS omega.
Setia, R., Dhaliwal, S.S., Singh, R., Kumar, V., Taneja, S., Kukal, S.S. & Pateriya, B. (2021). Phytoavailability and human risk assessment of heavy metals in soils and food crops around Sutlej river, India. Chemosphere, 263, p.128321.
Shahid, M., Austruy, A., Echevarria, G., Arshad, M., Sanaullah, M., Aslam, M., Nadeem M, Nasim W, & Dumat, C. (2014). EDTA-enhanced phytoremediation of heavy metals: a review. Soil and Sediment Contamination: An International Journal, 23(4), 389-416.
Sposito, G., Lund, L.J., & chang, A.C. (1982). Trace metal chemistry in arid-zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd, and Pb in solid phases. Soil Science Society of America Journal. 46: 260-265.
Sumner, M.E., & Miller, P.M. (1996). Cation exchange capacity and exchange coefficient. In: Sparks D.L. (ed.) Methods of Soil Analysis. SSSA. Madison. pp. 1201-1230.
Uchimiya, M., Chang, S. & Klasson, K.T. (2011). Screening biochars for heavy metal retention in soil: Role of oxygen functional groups. Journal of Hazardous Materials. 190, 432–441.
USEPA (US Environmental Protection Agency). (2002). Region 9, Preliminary Remediation Goals. www.epa.Gov/region09/waste/ sfund/prg. Accessed 10 July 2018.
Wan, X., Li, C., & Parikh, S. J. (2020). Simultaneous removal of arsenic, cadmium, and lead from soil by iron-modified magnetic biochar. Environmental Pollution, 261, 114157.
WHO/FAO, (2007). Joint FAO/WHO Food Standard Programme Codex Alimentarius Commission 13th Session. Report of the Thirty Eight Session of the Codex Committee on Food Hygiene, Houston, United States of America, ALINORM 07/30/13. Geneva, Switzerland. https://food.ec.europa.eu/system/files/2016-12/ codex_ccexec_cl2005-55_codex_en.pdf. Accessed 7 Apr 2020.
Yang, Q., Wang, X., Luo, W., Sun, J., Xu, Q., Chen, F., Zhao, J., Wang, S., Yao, F., Wang, D., & Zeng, G. (2018). Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived from waste activated sludge. Bioresource Technology, 247, 537-544.
Yang, X., Liu, J., McGrouther, K., Huang, H., Lu, K., Guo, X., He, L., Lin, X., Che, L., Ye, Z., & Wang, H. 2016. Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Environmental Science and Pollution Research, 23:974-984.
Yao, Y., Gao, B., Chen, H., Jiang, L., Inyang, M., Zimmerman, A.R., Cao, X., Yang, L., Xue, Y., & Li, H. (2012). Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation. Journal of hazardous materials, 209, 408-413.
Yokel, J., & Delistraty, D. A. (2003). Arsenic, lead, and other trace elements in soils contaminated with pesticide residues at the Hanford site (USA). Environmental Toxicology: An International Journal, 18(2), 104-114.
Zulfiqar, U., Farooq, M., Hussain, S., Maqsood, M., Hussain, M., Ishfaq, M., Ahmad, M., & Anjum, M. Z. (2019). Lead toxicity in plants: Impacts and remediation. Journal of environmental management, 250, 109557.