شبیه‌سازی مولفه‌های بیلان آبی با استفاده از مدل هیدرولوژیکی توزیعی TOPKAPI-X (مطالعه موردی: حوزه‌ آبخیز کشکان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی آبخیزداری گرایش آب، گروه مهندسی مرتع و آبخیزداری، دانشکده منابع طبیعی ، دانشگاه لرستان ، خرم آباد، ایران

2 دانشیار گروه مهندسی مرتع و آبخیزداری، دانشکده کشاورزی و منابع طبیعی، دانشگاه لرستان، خرم آباد، ایران

3 گروه مهندسی مرتع و آبخیزداری ، دانشکده منابع طبیعی ، دانشگاه لرستان ، خرم آباد، ایران

چکیده

با توجه به اهمیت شناخت و آگاهی از وضعیت بیلان آبی حوزه‌های‌آبخیز و تحلیل رفتار هیدرولوژیکی حوضه‌ها، برای برنامه‌ریزی و اجرای طرح‌های مرتبط با آب، لزوم استفاده از فناوری‌های نوین در پیش‌بینی مولفه‌های بیلان آبی بیش از پیش مشهود است. بر این اساس در حوزه ‌آبخیز کشکان با بکارگیری مدل‌ هیدرولوژیکی TOPKAPI-X مولفه‌های بیلان آب حوضه بر اساس طراحی شبکه سلولی شبیه‌سازی گردید. نقشه‌های، کاربری اراضی، نقطه خروجی، بافت خاک، مدل ارتفاعی رقومی و سری‌های زمانی پیوسته دما، بارش و دبی در گام زمانی روزانه ورودی‌های اصلی مدل می‌باشند. مدل در هر شبکه سلولی با توجه به پارامترهای موثر در بیلان آبی، موازنه بیلان آبی کل دوره را برقرار می‌نماید. واسنجی مدل برای 15 سال ابتدایی دوره آماری (1999 تا 2014 میلادی) و اعتبارسنجی مدل برای دوره 6 ساله انتهایی (2014 تا 2020میلادی) لحاظ شده است. بر طبق نتایج شبیه‌سازی  02/27  و 28/43 درصد کل بارش حوضه کشکان بصورت رواناب کل از حوضه‌ خارج شده (به ترتیب در دوره واسنجی و اعتبارسنحی) که با داده مشاهداتی در ایستگاه آبسنجی خروجی حوضه‌ مطابقت دارد. در ادامه برای ارزیابی کارایی مدل، مقادیر شبیه‌سازی شده در هر دو دوره آماری با استفاده از داده‌های مشاهداتی بارش و دبی مورد مقایسه قرار گرفت. روشهای آماری همانند معیار ارزیابی ناش- ساتکلیف نشان داد مدل TOPKAPI-X با دقت نسبتا خوبی (ضریب بالای 60 درصد) مولفه‌های بیلان آبی نظیر تبخیر واقعی و پنانسیل، نفوذ و مقدار رواناب خصوصا رواناب کل را در این حوضه پیش‌بینی نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Simulation of water balance components using TOPKAPI-X distributed hydrological model (Case study: Kashkan basin)

نویسندگان [English]

  • Mohammad Mahdi Artimani 1
  • Hossein Zeinivand 2
  • Nasser Tahmasebipour 3
1 PhD student, Department of Range and Watershed Management Engineering, Faculty of Natural Resources, Lorestan University. Khorramabad, Iran
2 Associate Prof. Department of Range and Watershed Management Engineering,, Faculty of Agriculture and Natural Resources, Lorestan University, Khorramabad, Iran
3 Department of Range and Watershed Management Engineering, Faculty of Natural Resources, Lorestan University. Khorramabad, Iran
چکیده [English]

 
Considering the importance of knowing and awareness of the watersheds water balance status, and analyzing the hydrological behavior of watersheds for planning and implementing water-related projects, the need to use new technologies in predicting water balance components is more evident than ever. Based on this, in the Kashkan basin by utilizing the TOPKAPI-X hydrological model, the water balance components of the basin were simulated according to the cellular network design. Digital maps of the basin, land use, outlet point, soil texture, elevation, and continuous time series of temperature, precipitation, and discharge in the daily time step are the main inputs of the model. The model in each cell network balances the water balance of the entire period. Model calibration was done for the 15 years of the statistical period (1999 to 2014) and model validation for the 6-year period (2014 to 2020). The results showed that 27.02 and 28.43 percent of the total precipitation of the Kashkan basin was discharged from the basin as total runoff (respectively for calibration and validation periods), which is consistent with the observation data at the outlet hydrometry station. Next, to evaluate the efficiency of the model, the simulated values in both statistical periods were compared to the observational discharge. Statistical methods such as the Nash-Sutcliffe evaluation criteria showed that the TOPKAPI-X model predicted the water balance components such as actual and potential evapotranspiration, infiltration, and the amount of runoff, especially the total runoff, in this basin with relatively good accuracy (coefficient above 60%).

کلیدواژه‌ها [English]

  • Spatially distributed model
  • flow simulation
  • Karkhe basin
  • TOPKAPI-X

Simulation of water balance components using TOPKAPI-X distributed hydrological model (Case study: Kashkan basin)

EXTENDED ABSTRACT

Introduction

Hydrological models are a simplified representation of the real hydrological system, which help to study the functioning of the basin in response to various inputs and to better understand the hydrological processes. The use of models to estimate the annual runoff of watersheds in arid and semi-arid areas without hydrometry stations has been of interest to hydrology researchers for a long time. For this purpose, in this research, after introducing the capabilities of TOPKAPI-X as a hydraulic-hydrological model (which has not been applied by the researchers in Iran so far), the precipitation-runoff processes of Kashkan basin in the environment TOPKAPI-X has been modeled to simulate the flood flow process. According to the review of scientific sources, it was found that the TOPKAPI-X is a model with a high capability for simulating the flow rate and water balance, and the efficiency of this model has not been evaluated in the Kashkan basin.

Material and methods

The studied area of ​​this research is the Kashkan subbasin of the Karkhe river basin. The TOPKAPI-X model is a type of continuous and distributed runoff precipitation model that has been successfully implemented as a research and operational hydrological model in many basins in the world (Liu and Todini, 2002). This model consists of five main modules that simulate hydrological processes including subsurface flow, underground flow, channel flow, evaporation and transpiration, and snow. This model can simulate in minute, hourly, or daily time steps.

In this model, continuous time series data were considered in daily time step. The time series of daily precipitation during the statistical period, including the daily rainfall of 19 stations, during the statistical period of 1999 to 2020 was used to simulate the flow. After running the model several times, the general parameters of the model were manually changed each time, until their optimal values were obtained by considering the appropriate values of the evaluation criteria (NS and Bias). Finally, after the calibration of the model, a six-year period (2014-2020) has been considered as the model validation.

Results

In this research, to simulate the daily flow and determine the water balance of the basin, all the components of the water balance such as precipitation, snowmelt, surface runoff, infiltration, evapotranspiration, deep infiltration, and subsurface flow were simulated.

The results of the comparison of hydrographs during the peak flows show the good efficiency of the model. Also, visual comparison of the observed and simulated hydrographs show that the time to peak in two hydrographs is the same, and have occurred in one day. According to the Nash-Sutcliffe criterion, the efficiency of the model in estimating the flow rate in the two periods of calibration and validation is 61.9% and 61.7%, respectively, in the Kashkan basin. The results of calibration and validation showed that the validation results of the model were somewhat weaker than the calibration results, which are consistent with the findings of Crook et al. (2005) and Ravasuka et al. (2014). In general, in some parts of the statistical period, the results of the model were satisfactory, and in some periods, the simulation process was weak. This issue can be related to the sensitivity of the model to the length of the calibration period (Zarei et al. 2012; Crook et al. 2005) and the error related to the mathematical structure of the model (Molehi et al. 2006). The effectiveness of this model in simulating the flow is consistent with the results of Liu et al. (2009), Vischel et al. (2008), Kasia et al. (2009), Sinclari et al. (2013), and Janabi et al. (2015).

Conclusion

Today, it is possible to estimate the various components of the water balance using distributed hydrological models. In this research, the surface runoff and water balance components of the basin were obtained based on model effective parameters in the daily time step with appropriate accuracy, and the initial hydrograph of the runoff was extracted. In the calibration stage, to improve the simulation and better match between the observed and simulated discharges, the model's effective parameters were calibrated. The studied area had different land use and soil types. In general, the TOPKAPI-X model showed relatively good performance for the studied basin. Also, the results of this research can be used for studies, especially hydrology studies, natural resources management and planning, environment and water resources.

Amini, MA., Torkan, GH., Eslamian, SS., Zareian, MJ., & Besalatpour, AA. (2019) Assessment of SWAT hydrological model in catchments' water balance simulation located in semi-arid regions (Case study: Zayandeh-Rud River Basin). Journal of Water and Soil, 32(5), 849-863. (In persian).
Anand, J., Gosain, AK., & Khosa, R. (2018) Prediction of land use changes based on land change modeler and attribution of changes in the water balance of Ganga basin to land use change using the SWAT model. Science of the Total Environment, 644, 503- 519.
Andres, E.O., & Coccia, G. (2013). Towards a better representation of the hydrological processes The model TOPKAPI - X. International Symposium on Distributed Hydrological Modelling, University of Bologna, 5-7 June 2013, Napoli – Italia.
Artimani M, Zeinivand H, Tahmasebi N, & Haghizadeh, A. (2017). SWAT model Assessment to determine determination of water balance components of Gamasiab basin. Journal of Rainwater Catchment Systems, 5(2), 51-64. (In Persian).
Artimani M, Zeinivand H, & Tahmasebi, N. (2016). Assessment and determination of water balance components of the Gamasiab Basin. Journal of Rainwater Catchment Systems, 4 (4), 57-66. (In Persian).
Azadi, F., Sadough, S. H., Ghahroudi, M., & Shahabi, H. (2020). Zoning of Flood Risk in Kashkan River basin using Two Models WOE and EBF. Journal of Geography and Environmental Hazards, 9(1), 45-60. (In Persian).
Batelaan, O., Chormanski, J., Van de Voorde, T., & Canters, F. (2007). Improved distributed runoff modelling of urbanised catchments by integration of multi-resolution remote sensing. Geoscience and remote sensing  symposium,  5021-5024.
Ciarapica, L., & Todini, E. (2002). TOPKAPI: A model for the representation of the rainfall-runoff process at different scales. Hydrol. Process, 16, 207–229.
Coccia, G., Mazzetti, C., Ortiz, E., & Todini, E. (2009). Application of the Topkapi Model within the Dmip 2 Project. In Proceedings of the 23rd Conference on Hydrology, San Antonio, TX, USA, 10–12.
Croke, BM., Andrews, W., Spate, F., & Cuddy, J. (2005). IHACRES user guide. Technical Report 2005/19. Second ed. ICAM, School of Resources. Environment and Society. The Australian National University. Canberra.
Eini, M.R., Javadi, S., Delavar, M., Gassman, P.W., & Jarihani, B. (2020). Development of alternative SWAT-based models for simulating water budget components and streamflow for a karstic-influenced watershed. Catena, 195, 104801.
Ghasemiamin, N., Arman, N., & Zeinivand, H. (2018). Investigation of land use changes effects on daily stream flow in Nojian Watershed by Clue-s and WetSpa models. Watershed Engineering and Management, 10(1), 14-27. (In Persian).
Ghodousi, M., Delavar, M. & Morid, S. (2014). Impact of land use changes on hydrology of Ajichai Basin and its input to Urmia Lake. Iranian Journal of Soil and Water Research, 45(2), 123-133. (in Persian).
Farokhnia, A., Morid, S., Delavar, M., & Abbaspour, K., (2018) Development of SWAT-LU model for simulation of urmia lake water level decrease and assessment of the proposed actions for its restoration (Role of anthropogenic and climatic factors on hydrological change of the basin and lake). Iranian Journal of Irrigation & Drainage, 12(5), 1041- 1058. (In persian).
Janabi, F., Ongdas, N., Bernhofer, C., Benisch, J., & Krebs, P. (2021). Assessment of TOPKAPI-X Applicability for Flood Events Simulation in Two Small Catchments in Saxony. Hydrology, 8, 109. https://doi.org/ 10.3390/hydrology8030109.
Jolejolea, ME., Kimb, BJ., Jeonb, DJ., Cayetanoa, M., & Kimb, JH., (2018) Scenario study of the effect of different land use to a sub-basin in Yeongsan River basin using SWAT model. Desalination and Water Treatment, 120, 198-204.
Kling, H., Fuchs, M., & Paulin, M. (2012). Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. Journal of Hydrology, 424, 264-277.
Liu, J., Chen, X., Zhang, J., & Flury, M. (2009). Coupling the Xinanjiang model to a kinematic flow model based on digital drainage networks for flood forecasting. Hydrol. Process, 23, 1337–1348.
Liu, Z., & Todini, E. (2005). Assessing the TOPKAPI non-linear reservoir cascade approximation by means of a characteristic lines solution. Hydrol. Process, 19, 1983–2006.
Liu, Z., Martina, MLV., & Todini, E. (2005). Flood forecasting using a fully distributed model: Application of the TOPKAPI model to the Upper Xixian Catchment. Hydrol. Earth Syst. Sci. 9, 347–364.
Mehdi nasab, M., tavousi, T., tavousi, T., & Negaresh, H. (2015). Modeling of Rainfall - Runoff Kashkan River Catchment Based on Statistical Models. Geography and Environmental Planning, 26(2), 67-84. (In Persian).
Mimiko, MA., Hadjisiavva, PS., Kouvopoulos, YS., & Afrataos, H. (1992). Regional climate change impacts. hydrological sciences journal, 95-108.
Mo, G., Zhang, Y., Huang, Y., Mo, C., & Yang, Q., (2020) Evaluation and hydrological impact of land-use changes in the Longtan basin. Journal of Earth System Science, 129(1), 1-11.
Mouelhi, S., Michel, C., Perrin, C., & Andréassian, V. (2006). Linking stream flow to rainfall at the annual time step: the Manabe bucket model revisited. Journal of Hydrology, 328 (1), 283-296.
Nash, J.E., & Sutcliffe, J.V. (1970). River flow forecasting through conceptual models part I. A discussion of principles. Journal of Hydrology, 10(3), 282-290.
Näschen, K., Diekkrüger, B., Leemhuis, C., Seregina, L.S., & van der Linden, R. (2019). Impact of climate change on water resources in the Kilombero Catchment in Tanzania. Journal of Water 2019, 11(859),1-28.
Nguyen, H., Recknagel, F., Meyer, W., Frizenschaf, J., Ying, H., & Gibbsd, M. (2019). Comparison of the alternative models SOURCE and SWAT for predicting catchment streamflow, sediment and nutrient loads under the effect of land use changes. Science of The Total Environment, 662 (3): 254-265.
Nouri, Z., Talebi, A., & Asadi, M. A. (2019). Investigation of the SWAT Model Efficiency to Determine Water Balance Components (Case Study: Semirom Mehrgerd Watershed), Iran-Water Resources Research, 15(3), 133-143. (In Persian).
Oliveira Serrão, E.A., Tavares Silva, M., Rocha Ferreira, T., Paulo Rodrigues, V., Salviano Sousa, F., Meiguins Lima, A.M., Paiva Ataide, L.C., & Sobrinho Wanzeler, RT., (2020). Land use change scenarios and their effects on hydropower energy in the Amazon, Journal Of Science of The Total Environment, 744, 140981.
Patil, NS., & Nataraja, M., (2020) Effect of land use land cover changes on runoff using hydrological model: A case study in Hiranyakeshi watershed. Modeling Earth Systems and Environment, 6(4), 2345-2357.
Peng D, Zhijia L, & Zhiyu L. (2008). Numerical algorithm of distributed TOPKAPI model and its application. Water Sci Eng, 1, 14–21.
Raja, O., Parsinejad, M., & Tajrishy, M. (2023). Estimation and evaluation of water balance components by calibrated SWAT Model, case study: Mahabad Plain. Watershed Engineering and Management, 15(1), 109-129. (In Persian).
Razavi, S., davary, K., Shahedi, M., talebi, F., & Joodavi, A. (2019). An overview on water balance models: mathematical-conceptual water balance models for watershed. Iranian Water Researches Journal, 13(4), 125-136. (In Persian).
Rwasoka, DT., Madamombe, CE., Gumindoga, W., & Kabobah, A. (2013). Calibration, validation, parameter indentifiability and uncertainty analysis of a 2–2-parameter parsimonious monthly rainfall-runoff model in two catchments in Zimbabwe. Physics and Chemistry of the Earth, 67 (3): 36-46.
Safari, A., De Smedt, F. & Moreda, F. (2009). WetSpa model application in the Distributed Model Intercomparison Project (DMIP2). Journal of Hydrology.
Shafiei, M., & Gharari, S. (2018). A Review on Hydrological Modelling Concepts: Part 1 - Introduction of Modelling Process. Journal of Water and Sustainable Development, 4(2), 95-102. (In Persian).
Sinclair, S., & Pegram, G.G.S. (2010). A comparison of ASCAT and modelled soil moisture over South Africa, using TOPKAPI in land surface mode. Hydrol. Earth Syst. Sci. 14, 613–626.
Sinclair, S., & Pegram, G.G.S. (2013). A sensitivity assessment of the TOPKAPI model with an added infiltration module. J. Hydrol. 479, 100–112.
Vischel, T., Pegram, G., Sinclair, S., & Parak M. (2008). Implementation of the TOPKAPI model in South Africa: Initial results from the Liebenbergsvlei catchment. Water Sa, 34, 331–342.
Viviroli, D., Zappa, M., Gurtz, J., & Weingartner R. (2009). An introduction to the hydrological modelling system PREVAH and its pre- and post-processing tools. Environ. Model. Softw. 24, 1209–1222.
Wegehenkel, M., & Kersebaum, K.C. (2004). The validation of a modeling system to calculating water balance and catchment discharge using simple techniques based field data and remote sensing data, physics, and chemistry of earth, 30, 171-179.
Wei, X., Bailey, R.T., & Tasdigh, A. (2018). Using the SWAT Model in Intensively Managed Irrigated Watersheds: Model Modification and Application. Journal of Hydrologic Engineering, 23(10), 04018044, 1-17.
Yaghobi, F., & Bahremand, A. (2012). Streamflow Simulation using Spatially Distributed Hydrologic Model, WetSpa in Chehel-Chai Watershed in Golestan Province. Journal of Water and Soil Conservation, 18(3), 185-207. (In Persian).
Zeinivand, H., & De Smedt, F. (2009). Hydrological Modeling of Snow Accumulation and Melting on     River Basin Scale, Water Resource Manage. 32, 252-267.