ارزیابی مدل‌های AquaCrop و SWAP در شبیه‌سازی رشد و زیست‌توده ارقام مختلف ذرت تحت شرایط استفاده از آب شور با سیستم آبیاری قطره‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی آبیاری و آبادانی، دانشکده کشاورزی، دانشگاه تهران، کرج، ایران

چکیده

استفاده از مدل‌های شبیه‌سازی یک استراتژی در مدیریت مصرف آب کشاورزی و روشی مؤثر در پیش‌بینی تأثیر مدیریت آبیاری و کیفیت آب بر عملکرد محصول است. این مطالعه با هدف ارزیابی دو مدل SWAP و AquaCrop در شبیه‌سازی رشد و زیست‌توده سه رقم ذرت علوفه‌ای در شرایط استفاده از آب شور با سیستم آبیاری قطره‌ای در مزرعه پژوهشی پردیس کشاورزی و منابع طبیعی دانشگاه تهران انجام شد. به‌منظور واسنجی و صحت‌سنجی مدل‌ها از داده‌های مزرعه‌ای حاصل از یک آزمایش فاکتوریل با دو عامل رقم ذرت (سه رقم ذرت علوفه‌ای سینگل‌کراس 704، 400 و 260) و شوری آب آبیاری (سه سطح شوری آب آبیاری 7/0، 3 و 5 دسی‌زیمنس بر متر) استفاده شد. در مرحله صحت‌سنجی برای مدل AquaCrop، آماره‌های R2، RMSE و NRMSE در مقایسه داده‌های اندازه‌گیری و شبیه‌سازی شده درصد پوشش سبز (CC) به‌ترتیب برابر 953/0، 69/5 و 8 درصد و برای مدل SWAP آماره‌های مذکور برای شاخص سطح برگ (LAI) به‌ترتیب 477/0، 610/1 و 2/54 درصد محاسبه شد. برخلاف نتایج ضعیف مدل SWAP در برآورد LAI، هر دو مدل SWAP و AquaCrop زیست‌توده ارقام ذرت در تیمارهای مختلف را به‌خوبی شبیه‌سازی کردند. در مرحله واسنجی و صحت‌سنجی RMSE و NRMSE هر دو مدل به‌ترتیب کمتر از 5/0 تن در هکتار، 3 درصد (واسنجی) و یک تن بر هکتار و 7 درصد (صحت‌سنجی) به‌دست آمد. به‌طور کلی می‌توان از هر دو مدل در مطالعات مختلف برای ارقام متفاوت ذرت علوفه‌ای تحت شرایط شوری آب آبیاری و خاک استفاده کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of AquaCrop and SWAP models in simulating the growth and biomass of different maize cultivars under the conditions of using saline water with drip irrigation system

نویسندگان [English]

  • Hossein Golshani
  • Morteza khoshsimaie chenar
Department of Irrigation and Reclamation Engineering, Faculty of Agriculture, University of Tehran, Karaj, Iran.
چکیده [English]

Using simulation models is a key strategy in agricultural water management and an effective way to predict the impact of irrigation management and water quality on crop yield. This study aimed to evaluate the performance of the SWAP and AquaCrop models in simulating the growth and biomass production of three maize varieties under the conditions of using saline water for irrigation with a drip irrigation system at the research farm of Tehran University of Agriculture and Natural Resources Campus. In order to calibrate and validate the models, field data obtained from a factorial experiment with two factors of maize variety (SC704, 400, and 260) and irrigation water salinity (0.7, 3, and 5 dS/m) were used. In the validation stage of the AquaCrop model, the R2, RMSE, and NRMSE statistics for the canopy cover (CC) showed a high level of agreement between the measured and simulated data, with values of 0.953, 5.69, and 8% respectively. For the SWAP model, the calculated statistics for the leaf area index (LAI) were 0.477, 1.610, and 54.2%, respectively. Despite the poor performance of the SWAP model in estimating LAI, both the SWAP and AquaCrop models effectively simulated the biomass of maize cultivars under different treatments. In the calibration and validation stage, RMSE and NRMSE of both models were less than 0.5 ton/ha, with 3% (calibration) and 1 ton/ha, 7% (validation), respectively. In general, both models can be used in various studies for different maize cultivars under irrigation water and soil salinity conditions.

کلیدواژه‌ها [English]

  • calibration and validation
  • canopy cover
  • leaf area index
  • plant modeling
  • Salinity stress

Evaluation of AquaCrop and SWAP models in simulating the growth and biomass of different maize cultivars under the conditions of using saline water with drip irrigation system

EXTENDED ABSTRACT

Introduction

Water management is one of the most significant challenges of this century. The world is experiencing a decrease in fresh water due to population growth. Furthermore, the widespread use of saline water for irrigation has become prevalent due to water scarcity in many regions of the country. In areas where plants are under irrigation, it is necessary to have proper management and planning for the optimal use of water. It is possible to enhance irrigation management and precise planning for optimal water use in arid and semi-arid areas through the use of mathematical models. The use of simulation models is a strategy for managing agricultural water consumption and an effective method for predicting the impact of irrigation management and water quality on crop yield, provided that the models are proven to be accurate. Therefore, it is important to assess the accuracy of product simulation models in simulating product performance under these conditions.

Objective

The aim of this study is to assess the performance of two SWAP and AquaCrop models in simulating the growth of different maize cultivars under conditions involving the use of saline water for irrigation with a drip irrigation system.

 Materials and method

This research was conducted using a factorial experiment and a randomized complete block design with two factors and three blocks (repetitions), resulting in a total of 9 treatments and 27 experimental plots in 2016 at the research farm of the Department of Irrigation and Development Engineering, University of Tehran, situated in Karaj. The area of each plot is approximately 12 m2 (3 × 4), which includes four rows of maize plants spaced 75 cm apart and extending four meters in length. The experimental factors included three maize varieties: SC 704, 400, and 260 (V1, V2 and V3), and three levels of irrigation water salinity: 0.7, 3 and 5 dS m-1 (S1, S2 and S3) to apply salinity stress. The data measured in the field, including leaf area index, canopy cover, and biomass, were used to calibrate and verify two AquaCrop and SWAP models.

Results and discussion

In the calibration stage of the AquaCrop model, the R2, RMSE, NRMSE, and CRM statistics between the measured and simulated data of crop canopy cover (CC) are 0.953, 6.107%, 8.4%, and -0.059, respectively. For the SWAP model, the corresponding statistics for leaf area index (LAI) were calculated as 0.763, 0.986 (m2 m-2), 33.2%, and 0.010. In the validation stage of the AquaCrop model, the R2, RMSE, and NRMSE statistics for the comparison between the measured and simulated data of CC are 0.953, 5.69, and 8%, respectively. For the SWAP model, the corresponding statistics for LAI are 0.477, 1.610 (m2 m-2), and 54.2%. Considering that LAI was measured in the laboratory for a single plant, and the SWAP model estimates LAI using specific leaf area (SLA) without considering crop density as an input parameter, it appears that one of the reasons for the low accuracy of this model in estimating this index is the omission of crop density as a factor. The low simulation accuracy can also be attributed to errors in selecting the plant for LAI measurement. Contrary to the poor results of the SWAP model in LAI estimation, both the SWAP and AquaCrop models effectively simulated the biomass of corn cultivars in different treatments. In the calibration and validation phase, RMSE and NRMSE of both models were less than 0.5 ton/ha and 3% (validation), and 1 ton/ha and 7% (validation), respectively.

Conclusion

According to the simulation results and the assessment of model efficiency using statistical indicators, both the AquaCrop and SWAP models demonstrate acceptable accuracy in simulating the growth and yield of corn when irrigated with saline water. These models can be utilized under various scenarios. In general, the SWAP and AquaCrop models can be utilized in various studies involving different maize cultivars under varying irrigation water and soil salinity conditions. Finally, the results of this study can assist farmers and researchers in making informed decisions about irrigation management strategies and crop selection. Furthermore, the outcomes of these evaluations can contribute to enhancing the models, making them more precise and dependable for simulating the growth and performance of various maize cultivars under saltwater irrigation.

Abdalhi, M. A., Jia, Z., Luo, W., Tang, S., Ali, O. O., & Cheng, J. (2019). FAO AquaCrop model performance: in green canopy cover, soil moisture and production of maize at middle and lower reaches plain of Yangtze River of China. Russian Agricultural Sciences45, 186-193.
Abdelkhalik, A., Pascual-Seva, N., Nájera, I., Giner, A., Baixauli, C., & Pascual, B. (2019). Yield response of seedless watermelon to different drip irrigation strategies under Mediterranean conditions. Agricultural Water Management212, 99-110.
Abedzadeh, S., Roozbahani, A., & Heidari, A. (2020). Risk Assessment of Water Resources Development Plans Using the Fault Tree Analysis Method (Case Study: District 4 of Mokran and Bandar Abbas). Iranian journal of Ecohydrology7(1), 29-45. doi: 10.22059/ije.2020.288016.1201 (In Persian)
Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome300(9), D05109.
Álvarez-Méndez, S. J., Padrón-Armas, I., & Mahouachi, J. (2021). Irrigation management strategies through the combination of fresh water and desalinated sea water for banana crops in El Hierro, Canary Islands. Water Reuse11(3), 464-474.
Amiri, E., & Shirshahi, F. (2018). Evaluation of Maize Response to Less Irrigation Management Using Swap Model. Crop Ecophysiology (Agriculture Science), 4 (44), 759-774. (In Persian)
Ayers, R. S., & Westcot, D. W. (1985). Water quality for agriculture (Vol. 29, p. 174). Rome: Food and agriculture organization of the United Nations.
Boogaard, H. L., Van Diepen, C. A., Rotter, R. P., Cabrera, J. M. C. A., & Van Laar, H. H. (1998). WOFOST 7.1; user's guide for the WOFOST 7.1 crop growth simulation model and WOFOST Control Center 1.5 (No. 52). SC-DLO.
Burn, S., Hoang, M., Zarzo, D., Olewniak, F., Campos, E., Bolto, B., & Barron, O. (2015). Desalination techniques—A review of the opportunities for desalination in agriculture. Desalination364, 2-16.
Colombani, N., Mastrocicco, M., & Giambastiani, B. M. S. (2015). Predicting salinization trends in a lowland coastal aquifer: Comacchio (Italy). Water Resources Management29, 603-618.
Daghari, I., Bani, A., Bousnina, H., & Chaabane, A. (2020). On‐farm water and salt management under a strawberry–pepper combination in the Korba area. Irrigation and Drainage69(3), 441-447.
Ebrahimipak, N. A., Egdarnejad, A., & Khodadadi Dehkordi, D. (2018). Evaluation of AquaCrop Model to Simulate Corn Yield under Water deficit and Superabsorbent application. Irrigation and Water Engineering8(3), 166-184. (In Persian)
Ebrahimipak, N., Egdernezhad, A., Tafteh, A., & Ahmadee, M. (2019). Evaluation of AquaCrop, WOFOST, and CropSyst to Simulate Rapeseed Yield. Iranian Journal of Irrigation & Drainage13(3), 715-726. (In Persian)
Feng, D., Li, G., Wang, D., Wulazibieke, M., Cai, M., Kang, J., ... & Xu, H. (2022). Evaluation of AquaCrop model performance under mulched drip irrigation for maize in Northeast China. Agricultural Water Management261, 107372.
Garcia-Caparros, P., Contreras, J. I., Baeza, R., Segura, M. L., & Lao, M. T. (2017). Integral management of irrigation water in intensive horticultural systems of Almería. Sustainability9(12), 2271.
Hammami, Z., Qureshi, A. S., Sahli, A., Gauffreteau, A., Chamekh, Z., Ben Azaiez, F. E., ... & Trifa, Y. (2020). Modeling the effects of irrigation water salinity on growth, yield and water productivity of barley in three contrasted environments. Agronomy10(10), 1459.
Hassanli, M., Ebrahimian, H., Mohammadi, E., Rahimi, A., & Shokouhi, A. (2016). Simulating maize yields when irrigating with saline water, using the AquaCrop, SALTMED, and SWAP models. Agricultural water management176, 91-99.
He, Q., Li, S., Hu, D., Wang, Y., & Cong, X. (2021). Performance assessment of the AquaCrop model for film-mulched maize with full drip irrigation in Northwest China. Irrigation Science39, 277-292.
Huang, M., Wang, C., Qi, W., Zhang, Z., & Xu, H. (2022). Modelling the integrated strategies of deficit irrigation, nitrogen fertilization, and biochar addition for winter wheat by AquaCrop based on a two-year field study. Field Crops Research282, 108510.
Huang, X., Lin, D., Mao, X., & Zhao, Y. (2023). Multi-source data fusion for estimating maize leaf area index over the whole growing season under different mulching and irrigation conditions. Field Crops Research303, 109111.
Jiang, J., Feng, S., Ma, J., Huo, Z., & Zhang, C. (2016). Irrigation management for spring maize grown on saline soil based on SWAP model. Field Crops Research196, 85-97.
Kamyab-Talesh, F., Mostafazadeh-Fard, B., Vazifedoust, M., Shayannejad, M., & Navabian, M. (2017). Salt Tolerance Analysis of Crops Using the SWAP Model. Biosciences Biotechnology Research Asia14(2), 643-649.
Kamyab-Talesh, F., Mostafazadeh-Fard, B., Vazifedoust, M., Shayannejad, M., & Navabian, M. (2017). Salt Tolerance Analysis of Crops Using the SWAP Model. Biosciences Biotechnology Research Asia14(2), 643-649.
Kaner, A., Tripler, E., Hadas, E., & Ben-Gal, A. (2017). Feasibility of desalination as an alternative to irrigation with water high in salts. Desalination416, 122-128.
Karimi, S., Egdernezhad, A., & Nakhjavanimoghaddam, M. M. (2021). Evaluation of SWAP Model for Simulation of Early and Mid-Corn in Different Plant Densities under Sprinkler Irrigation. Iranian Journal of Irrigation & Drainage14(6), 1893-1907. (In Persian)
Khafajeh, H., Banakar, A., Minaei, S., & Delavar, M. (2020). Evaluation of AquaCrop model of cucumber under greenhouse cultivation. The Journal of Agricultural Science158(10), 845-854.
Khoshsimaie chenar, M., & Noory, H. (2019). Effect of Irrigation Water Salinity on Yield and Agronomic Characteristics of Three Corn (Zea mays L.) Hybrids Using Drip-Tape Irrigation. Iranian Journal of Soil and Water Research50(8), 2037-2049. doi: 10.22059/ijswr.2019.271808.668073 (In Persian)
Khoshsimaie chenar, M., & Noory, H. (2020). Effect of Irrigation Water Salinity on Soil Salinity and Yield of Three Maize Hybrids in Drip Irrigation System. The first national conference on irrigation deficiency and the use of unconventional water in agriculture in dry areas،Mashhad،https://civilica.com/doc/1193778 (In Persian)
Khoshsimaie chenar, M., Noory, H., & Mahmoudi molamahmoud, Z. (2021). Evaluation of SWAP model in estimating soil water content, salinity and yield of three forage maize cultivars under saline water use conditions. Water and Irrigation Management11(3), 495-512. doi: 10.22059/jwim.2021.325835.893 (In Persian)
Kroes, J. G., Van Dam, J. C., Bartholomeus, R. P., Groenendijk, P., Heinen, M., Hendriks, R. F. A., ... & Van Walsum, P. E. V. (2017). SWAP version 4: theory description and user manual. Alterra-rapport-Wageningen University and Research Centre, (2780).
Kumar, P., Sarangi, A., Singh, D. K., Parihar, S. S., & Sahoo, R. N. (2015). Simulation of salt dynamics in the root zone and yield of wheat crop under irrigated saline regimes using SWAP model. Agricultural Water Management148, 72-83.
Kumar, P., Sarangi, A., Singh, D. K., Parihar, S. S., & Sahoo, R. N. (2015). Simulation of salt dynamics in the root zone and yield of wheat crop under irrigated saline regimes using SWAP model. Agricultural Water Management148, 72-83.
Li, J., Chen, J., Qu, Z., Wang, S., He, P., & Zhang, N. (2019). Effects of alternating irrigation with fresh and saline water on the soil salt, soil nutrients, and yield of tomatoes. Water11(8), 1693.
Liang, H., Hu, K., Qin, W., Zuo, Q., & Zhang, Y. (2017). Modelling the effect of mulching on soil heat transfer, water movement and crop growth for ground cover rice production system. Field Crops Research201, 97-107.
Liu, B., Wang, S., Kong, X., Liu, X., & Sun, H. (2019). Modeling and assessing feasibility of long-term brackish water irrigation in vertically homogeneous and heterogeneous cultivated lowland in the North China Plain. Agricultural Water Management211, 98-110.
Mehrazar, A., Soltani, J., & Rahmati, O. (2016). Evaluation of the Aqua‎Crop Model to Simulate Maize Yield Response under Salinity Stress. Water and Soil30(5), 1426-1439 (In Persian)
Mekonnen, M. M., & Hoekstra, A. Y. (2016). Four billion people facing severe water scarcity. Science advances2(2), e1500323.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE50(3), 885-900.
Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water resources research12(3), 513-522.
Neysi, K., Egdernezhad, A., & Abbasi, F. (2023). Evaluation of SWAP Model for Simulating Corn Yield and Water Productivity under Different Conditions of Irrigation Water and Nitrogen Fertilizer Management. Iranian Journal of Irrigation & Drainage17(3), 573-584. (In Persian)
Nouri, M., Homaee, M., Pereira, L. S., & Bybordi, M. (2023). Water management dilemma in the agricultural sector of Iran: A review focusing on water governance. Agricultural Water Management288, 108480.
Raes, D., & Munoz, G. (2009). The ETo Calculator. Reference Manual Version3, 480.
Raes, D., Steduto, P., Hsiao, T. C., & Fereres, E. (2009). AquaCrop—the FAO crop model to simulate yield response to water: II. Main algorithms and software description. Agronomy Journal101(3), 438-447.
Ran, H., Kang, S., Li, F., Du, T., Tong, L., Li, S., ... & Zhang, X. (2018). Parameterization of the AquaCrop model for full and deficit irrigated maize for seed production in arid Northwest China. Agricultural Water Management203, 438-450.
Ranjbar, A., Rahimikhoob, A., Ebrahimian, H., & Varavipour, M. (2019). Assessment of the AquaCrop model for simulating maize response to different nitrogen stresses under semi-arid climate. Communications in Soil Science and Plant Analysis50(22), 2899-2912.
Rasouli, F., Kiani Pouya, A., & Šimůnek, J. (2013). Modeling the effects of saline water use in wheat-cultivated lands using the UNSATCHEM model. Irrigation Science31, 1009-1024.
Reca, J., Trillo, C., Sánchez, J. A., Martínez, J., & Valera, D. (2018). Optimization model for on-farm irrigation management of Mediterranean greenhouse crops using desalinated and saline water from different sources. Agricultural Systems166, 173-183.
Rhoades, J. D., Kandiah, A., & Mashali, A. M. (1992). The use of saline waters for crop production-FAO irrigation and drainage paper 48. FAO, Rome133.
Sandhu, R., & Irmak, S. (2019a). Assessment of AquaCrop model in simulating maize canopy cover, soil-water, evapotranspiration, yield, and water productivity for different planting dates and densities under irrigated and rainfed conditions. Agricultural Water Management, 224, 105753.
Sandhu, R., & Irmak, S. (2019b). Performance of AquaCrop model in simulating maize growth, yield, and evapotranspiration under rainfed, limited and full irrigation. Agricultural Water Management, 223, 105687.
Sarkohaki A, Egdernezhad A, & Minaei S. (2021b). Determining the Accuracy and Efficiency of Water-driven and Carbon-driven Crop Models to Simulate the Yield, Biomass and Water Use Efficiency of Corn. Journal of Water and Soil Science, 25(1), 141-156. (In Persian)
Sarkohaki, A., Egdernezhad, A., & Minaei, S. (2021a). Evaluation of AquaCrop for Yield and Water Use Efficiency Simulation of Corn with Different Irrigation Management under Salinity Stress. Iranian Water Researches Journal15(1), 133-147. (In Persian)
Scheierling, S. M., & Tréguer, D. O. (2018). Beyond crop per drop. Washington, DC: World Bank.
Soomro, K. B., Alaghmand, S., Shahid, M. R., Andriyas, S., & Talei, A. (2020). Evaluation of AquaCrop model in simulating bitter gourd water productivity under saline irrigation. Irrigation and Drainage, 69(1), 63-73.
Soothar, R. K., Wang, C., Li, L., Cui, N., Zhang, W., & Wang, Y. (2021). Soil salt accumulation, physiological responses, and yield simulation of winter wheat to alternate saline and fresh water irrigation in the North China Plain. Journal of Soil Science and Plant Nutrition, 21(3), 2072-2082.
Torrez, V., Jørgensen, P. M., & Zanne, A. E. (2013). Specific leaf area: a predictive model using dried samples. Australian Journal of botany61(5), 350-357.
UNESCO, U. W. (2020). United Nations World Water Development Report 2020: Water and Climate Change, Paris, UNESCO.
Van Diepen, C. V., Wolf, J., Van Keulen, H., & Rappoldt, C. (1989). WOFOST: a simulation model of crop production. Soil use and management5(1), 16-24.
Van Genuchten, M. T. (1980). A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils. Soil science society of America journal44(5), 892-898.
Van Genuchten, M. V., Leij, F. J., & Yates, S. R. (1991). The RETC code for quantifying the hydraulic functions of unsaturated soils.
Wang, B., van Dam, J., Yang, X., Ritsema, C., Du, T. and Kang, S., (2023). Reducing water productivity gap by optimizing irrigation regime for winter wheat-summer maize system in the North China Plain. Agricultural Water Management280, p.108229.
Wang, Q., Huo, Z., Zhang, L., Wang, J., & Zhao, Y. (2016). Impact of saline water irrigation on water use efficiency and soil salt accumulation for spring maize in arid regions of China. Agricultural Water Management163, 125-138.
yazdekhasti M., Shayannejad M., Eshghizadeh H., & Feizi M. (2018). The Effect of Different Saline Irrigation Regimes on the Yield of Grain Sorghum and Yield Simulation using SWAP Model. Water and Soil Science - Journal of Science and Technology of Agriculture and Natural Resources, 22(3), 95-106. (In Persian)
Zabihi, A., Darzi-Nafchali, A., & Khoshravesh, M. (2017). Analysing drought stress effects on yield and water use efficiency of rice and the root zone salinity. Environmental Stresses in Crop Sciences9(4), 375-385. doi: 10.22077/escs.2017.465 (In Persian)
Zhao, Y., Li, F., Wang, Y. and Jiang, R., (2020b). Evaluating the effect of groundwater table on summer maize growth using the AquaCrop model. Environmental Modeling & Assessment25, pp.343-353.
Zhao, Y., Mao, X., & Shukla, M. K., (2020a). A modified SWAP model for soil water and heat dynamics and seed–maize growth under film mulching. Agricultural and Forest Meteorology292, 108127.