توانایی پودر سنگ فسفات برخی معادن ایران برای حذف فسفات از محلول‌های آبی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم خاک، دانشکده کشاورزی، دانشگاه یاسوج، یاسوج ایران

چکیده

پودر سنگ فسفات ممکن است توانایی جذب فسفر محلول را داشته باشد زیرا ذرات آن ریز هستند. رفتار جذب - واجذب و سینتیک جذب فسفر (P) روی چهار نمونه پودر سنگ فسفات، از اسفوردی، چادرملو و یاسوج، بررسی شد. هم‌دمای جذب با در تماس قرار دادن یک گرم پودر سنگ فسفات با 20 میلی‌لیتر کلرید کلسیم 01/0 مولار حاوی غلظت‌های 10، 50، 100، 200، 400، 600، 800، و 1000 میلی‌گرم فسفر در لیتر از منبع پتاسیم هیدروژن فسفات در دو تکرار ارزیابی شد. آزادسازی فسفر از نمونه‌های تیمار شده با غلظت‌های مختلف فسفر با 20 میلی‌لیتر محلول 01/0 مولار کلرید کلسیم انجام شد. سینتیک جذب فسفر بر نمونه‌ها با دو غلظت اولیه 50 و 100 میلی‌گرم در لیتر و زمان 1، 2، 4، 8، 16، 24، و 48 ساعت در دو تکرار بررسی شد. نتایج نشان داد که کمترین مقدار جذب فسفر بر نمونه‌های مورد مطالعه در حدود 150 و بیشترین مقدار آن 12000 میلی‌گرم بر کیلوگرم بود. بیشترین درصد واجذب فسفر در حدود 15 درصد از فسفر جذب شده بود و با افزایش مقدار جذب فسفر درصد فسفر واجذب شده به حدود 2 تا 3 درصد کاهش یافت. داده‌های جذب فسفر بر نمونه‌ها به‌خوبی با معادلات فروندلیچ و لانگمویر قابل برازش بودند. سینتیک جذب فسفر یک واکنش سریع اولیه را نشان داد، که به سرعت فسفر محلول را کاهش داد. نتایج مطالعه حاضر نشان می‌دهد که پودر سنگ فسفات می‌تواند فسفر محلول را کاهش دهد که بهتر است در مصارف مختلف این ماده از جمله هنگام افزودن آن به بقایای آلی و نیز در مطالعه انحلال زیستی پودر سنگ فسفات به آن توجه شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The potential of powdered rock phosphate of some Iranian mines for removal of phosphate ions from aqueous solutions

نویسندگان [English]

  • Samaneh Jafary
  • Ebrahim Adhami
  • Hamidreza Owliaie
  • Mohamad Sedghi asl
Soil Science department, College of Agriculture, Yasuj university, Yasuj, Iran.
چکیده [English]

Powdered rock phosphate may have the potential of soluble phosphate sorption because its particles are small.  Phosphorus (P) sorption-desorption behavior and sorption kinetics were studied on four different fine powdered phosphate rocks (PPR), from Esfordi, Chadormalu and Yasuj mines. Sorption isotherms were evaluated by equilibrating 1 g PPR with 20 ml CaCl2- 0.01 M containing 10, 50, 100, 200, 400, 600, 800 and 1000 mg P L-1, as KH2PO4 in duplicates. Consequently, P release was studied by equilibrating the samples with 20 ml 0.01 M CaCl2. FTIR analysis was conducted on the blank samples, and those equilibrated with 1000 mg P L-1. Kinetics of phosphate sorption on PPRs was evaluated with two initial P concentrations (50 and 100 mg P L-1) and contact times of 1, 2, 4, 8, 16, 24, and 48 h with 0.01 M CaCl2 as the background solution in duplicate. Results showed that the least P sorption was around 150, and the maximum P sorption was 12000 mg kg-1 PPRs. The highest P release was around 15% of sorbed P, and releasable P was reduced to 2-3% of sorbrd P with the increase of P sorption. P sorption data showed a good fit with Freundlich and Langmuir equations. The kinetic of P sorption showed a fast reaction that rapidly diminished soluble P. Results of the present study suggest that PPRs could reduce soluble P, which is better to be considered at different usage of PPR such as incorporation with organic wastes and its biosolubilization.

کلیدواژه‌ها [English]

  • Phosphorus release
  • Sorption isotherms
  • Sorption Kinetics
  • Freundlich equation
  • Langmuir equation

The potential of powdered rock phosphate of some Iranian mine for removal of phosphate ions from aqueous solutions

EXTENDED ABSTRACT

 

Introduction

Natural apatite, known as powdered phosphate rock (PPR), is a low price fertilizer material that has been attempted to be used instead of commercial P fertilizers. Though the direct reaction of P with PPR is not considered important, it is reported that natural apatite could sorb soluble P, either by precipitation or adsorption mechanisms. The present study was conducted to evaluate the phosphate sorption ability of finely ground phosphate rock of four Iranian mines and to quantify the q/I relationships and kinetics of P retention with PPR.

Materials and Methods

Four PPR samples of Iranian mines were tested, two samples from Esfordi mine of Yazd province, one from Chadormalu mine of Yazd province, and one from a mine, near Yasuj. In duplicate, the phosphorus sorption isotherm was evaluated by 1:20 ratio of PPR:P solution containing 10, 50, 100, 200, 400, 600, 800 and 1000 mg P L-1 (as KH2PO4). Sorption data was fitted with the linear form of Langmuir, and Freundlich models. Following the sorption the release of sorbed P was evaluated by equilibrating with 20 ml CaCl2 0.01 M. The Fourier transform infrared (FTIR) spectra of the untreated PPR samples and those treated with 1000 mg P L-1 were recorded using a JASCO FTIR 460 plus spectrometer. The kinetics of P sorption on PPR samples was studied with two initial P concentrations (50 and 100 mg P L-1) in 0.01 M CaCl2 as the background solution with a ratio of 1: 20 of PPR:P solution under laboratory temperature (20-25 ºC) and in equilibrium time of 1, 2, 4, 8, 16, 24, and 48 h shaking. Kinetic equations, including zero order, first order, Elovich, parabolic diffusion, and power function models, were used to fit the kinetic sorption.

Results

The Ca and P content of the PPRs ranged from 41.3 to 62.6% CaO (29-44% Ca); and 6.90 to 24.50% P2O5 (3-11% P), respectively. Iron content was the highest in the raw PPR of Esfordi (around 20% Fe2O3), and the other PPRs contained 3-5 % Fe2O3. P sorption ranged from 144 to 12080 mg P kg-1 PPRs, and the highest P sorption occurred in Chadormalu, Yazd, the sample that reached up to 12000 mg kg-1. The release of sorbed P was 18-263 mg kg-1, and the highest release belonged to the PPR sample of Chadormalu, Yazd. The release quantity of the sorbed P increased linearly up to the initial concentration of 600 mg P L-1 and tended to remain constant at higher concentrations. Maximum % P release (around 15 % of the sorbed P) occurred at 10 mg P L-1. It drastically decreased by increasing P concentration and reached a minimum of about 2% above 100 mg P L-1. Phosphorus sorption data was well fitted to Freundlich and Langmuir isotherm models. The intercept of the Freundlich equation, kF, was 129-157 mg kg-1 P. The least KF belonged to the Esfordi Yazd PPR, and the highest one was observed in Chadormalu Yazd's PPR. The maximum retention capacity (bL) calculated from the Langmuir equation ranged from 15384 to 22222 mg kg-1 PPR. FTIR analysis showed that The strongest peak occurred on 1045 cm-1 for all samples, attributed to the asymmetric n3 mode of phosphate groups. The peaks in »466 n2 (bending) mode of phosphate groups, 570 and 609 asymmetric n3 mode, and P-O mode were evident in all samples. The quantity of P sorption vs. time (1 to 48h) ranged 540-1000 and 1123-2000 mg kg-1 on 50 and 100 mg P L-1, respectively. Phosphorus sorption by different PPRs, was initially fast and decreased by the increase of contact time. For all PPRs, the maximum sorption rate occurred at the first initial contact time (1 h) and decreased gradually. More than half of the final sorption quantity occurred at the initial time (1h). The content of P sorption was in the following order: Yasuj (540 mg kg-1) < Chadormalu (589 mg kg-1) -1)< raw Esfordi (742 mg kg-1); which was consistent over time. The raw Esfordi PPR had the highest P sorption rate and caused the removal of almost total soluble P in just 8 h. A similar trend with a slower kinetic rate was observed for the purified Esfordi PPR sample, which eliminated total soluble P in 16 h.

Conclusion

Results of the present study suggest that finely ground PPRs could rapidly retain a large quantity of soluble P, which is rarely reversible. Results presented here may be useful in the fixation of soluble P in sewage sludge or sewage effluent to prevent P transport in the environment and consequent water resources eutrophication.

Abdala, D. B., Northrup, P. A., Vicentin, F. C., & Sparks, D. L. (2015). Residence time and pH effects on the bonding configuration of orthophosphate surface complexes at the goethite/water interface as examined by Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. Journal of Colloid and Interface Science, 442, 15-21.
Adhami E, Ronaghi, A., Karimian, N., and Molavi, R. (2012). Transformation of phosphorus in highly calcareous soils under field capacity and waterlogged conditions. Soil Research, 50(3), 249-255.
Adhami, E., Salmanpour, A., Omidi, A., Khosravi, N., Ghasemi-Fasaei, R., & Maftoun, M. (2008). Nickel adsorption characteristics of selected soils as related to some soil properties. Soil & Sediment Contamination, 17(6), 643-653.
Arai, Y., & Sparks, D. L. (2001). ATR–FTIR spectroscopic investigation on phosphate adsorption mechanisms at the ferrihydrite–water interface. Journal of Colloid and Interface Science, 241(2), 317-326.
Bangar, K., Yadav, K., & Mishra, M. (1985). Transformation of rock phosphate during composting and the effect of humic acid. Plant and Soil, 85(2), 259-266.
Bellier, N., Chazarenc, F., & Comeau, Y. (2006). Phosphorus removal from wastewater by mineral apatite. Water Research, 40(15), 2965-2971.
Biswas, D., & Narayanasamy, G. (2006). Rock phosphate enriched compost: an approach to improve low-grade Indian rock phosphate. Bioresource Technology, 97(18), 2243-2251.
Bolland, M., & Barrow, N. (1988). Effect of level of application on the relative effectiveness of rock phosphate. Fertilizer Research, 15(2), 181-192.
Bolland, M., & Gilkes, R. (1988). The effectiveness of rock phosphate fertilisers in Australian agriculture: a review. Australian Journal of Experimental Agriculture, 28(5), 655-668.
Bolland, M., & Gilkes, R. (1989). Reactive rock phosphate fertilizers and soil testing for phosphorus: the effect of particle size of the rock phosphate. Fertilizer Research, 21(2), 75-93.
Bolt, G. H., & Bruggenwert, M. G. M. (1978). Soil chemistry. A. Basic elements: Elsevier Scientific Publishing Company.
Chien, S., & Menon, R. (1995). Factors affecting the agronomic effectiveness of phosphate rock for direct application. Fertilizer Research, 41(3), 227-234.
Daik, R., Lajnef, M., Amor, S., Elgharbi, S., Meddeb, H., Abdessalem, K., Ezzaouia, H. (2015). Application of gettering process on the improvement of the structural and mineralogical properties of Tunisian phosphate rock. J Material Sci Eng, 5(222), 2169-0022.1000222.
De-Bashan, L. E., & Bashan, Y. (2004). Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water Research, 38(19), 4222-4246.
Delgado-González, L, S Prost-Boucle, S Troesch, and P Molle. 2021. Granulated apatite filters for phosphorous retention in treatment wetlands: Experience from full-scale applications. Journal of Water Process Engineering 40:101927.
de Oliveira Mendes, G., Vassilev, N. B., Bonduki, V. H. A., da Silva, I. R., Ribeiro, J. I., & Costa, M. D. (2013). Inhibition of Aspergillus niger phosphate solubilization by fluoride released from rock phosphate. Applied Environmental Microbiology, 79(16), 4906-4913.
Elouear, Z., Bouzid, J., Boujelben, N., Feki, M., Jamoussi, F., & Montiel, A. (2008). Heavy metal removal from aqueous solutions by activated phosphate rock. Journal of Hazardous Materials, 156(1-3), 412-420.
Guedes, R. S., Melo, L. C. A., Vergütz, L., Rodríguez-Vila, A., Covelo, E. F., & Fernandes, A. R. (2016). Adsorption and desorption kinetics and phosphorus hysteresis in highly weathered soil by stirred flow chamber experiments. Soil and Tillage Research, 162, 46-54.
Gurdeep, K., & Reddy, M. S. (2015). Effects of phosphate-solubilizing bacteria, rock phosphate and chemical fertilizers on maize-wheat cropping cycle and economics. Pedosphere, 25(3), 428-437.
Hamdi, W., Pelster, D., & Seffen, M. (2014). Phosphorus sorption kinetics in different types of alkaline soils. Archives of Agronomy and Soil Science, 60(4), 577-586.
Iyengar, B., & Raja, M. E. (1983). Zinc adsorption as related to its availability in some soils of Karnataka. Journal of the Indian Society of Soil Science, 31(3), 432-438.
Jahangir Zadeh, N., Adhami, E., Naghiha, A. A., & Owliaie, H. (2016). Effect of moisture level and rock phosphate on soluble P at the presence of phosphorus solubilizing fungi during time Journal of Soil Management and Sustainable Production 6(2), 135-150 (In Persian with English abstract).
Jami, M. (2006). Geology, geochemistry and evolution of the Esfordi phosphate-iron deposit, Bafq area, Central Iran. PhD thesis, University of New South Wales.
Joko, I. (1985). Phosphorus removal from wastewater by the crystallization method. Water Science and Technology, 17(2-3), 121-132.
Kisitu, V. (1991). Some aspects of using rock phosphate as direct application fertilizers. Nutrient Cycling in Agroecosystems, 30(2), 191-192.
Mohammady Aria, M., Lakzian, A., Haghnia, G. H., Berenji, A. R., Besharati, H., & Fotovat, A. (2010). Effect of Thiobacillus, sulfur, and vermicompost on the water-soluble phosphorus of hard rock phosphate. Bioresource Technology, 101(2), 551-554.
Molle, P., Lienard, A., Grasmick, A., Iwema, A., & Kabbabi, A. (2005). Apatite as an interesting seed to remove phosphorus from wastewater in constructed wetlands. Water Science and Technology, 51(9), 193-203.
Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica chimica acta, 27, 31-36.
Nriagu, J. O. , & Moore, P. B. (1984). Phosphate minerals: Springer-Verlag.      
Singh, C. (1985). Preparation of phospho-compost and its effect on the yield of moong bean and wheat. Biological agriculture & horticulture, 2(3), 223-229.
Slansky, M., 1986. Geology of Sedimentary Phosphates. North Oxford Academic Publishers Ltd.
Solis, P., & Torrent, J. (1989). Phosphate sorption by calcareous Vertisols and Inceptisols of Spain. Soil Science Society of America Journal, 53(2), 456-459.
Stumm, W., & Morgan, J. J. (1996). Aquatic chemistry: chemical equilibria and rates in natural waters: Wiley.
Troesch, Stéphane, Dirk Esser, and Pascal Molle. 2016. Natural rock phosphate: a sustainable solution for phosphorous removal from wastewater. Procedia Engineering 138:119-126.
Wei, S., Tan, W., Liu, F., Zhao, W., & Weng, L. (2014). Surface properties and phosphate adsorption of binary systems containing goethite and kaolinite. Geoderma, 213, 478-484.
Xiao, C.-Q., Chi, R.-A., Huang, X.-H., Zhang, W.-X., Qiu, G.-Z., & Wang, D.-Z. (2008). Optimization for rock phosphate solubilization by phosphate-solubilizing fungi isolated from phosphate mines. Ecological Engineering, 33(2), 187-193.