بررسی وضعیت نیترات در محصولات کشاورزی ایران و نقدی بر مطالعات گزارش شده-مطالعه مروری

نوع مقاله : مروری

نویسندگان

1 دانشجوی دکتری، گروه علوم و مهندسی خاک، دانشکده مهندسی و فناوری کشاورزی دانشگاه تهران، ایران.

2 موسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران، کرج، ایران

3 دانش آموخته دکتری گروه علوم و مهندسی خاک، دانشکده مهندسی و فناوری کشاورزی دانشگاه تهران، ایران.

4 سازمان تحقیقات، ترویج و آموزش کشاورزی (AREEO)، موسسه تحقیقات خاک و آب (SWRI)، کرج، ایران.

5 دانش آموخته دکتری، گروه علوم و مهندسی خاک، دانشکده مهندسی و فناوری کشاورزی دانشگاه تهران، ایران.

چکیده

برای انجام این پژوهش 110 مطالعه منتشر شده در زمینه پایش غلظت نیترات در محصولات کشاورزی تولید شده در ایران که تا پایان سال 1401 منتشر شده بودند، جمع‌آوری گردید. این مطالعات ابتدا از نظر متدولوژی و کنترل کیفیت و تضمین کیفیت نتایج ارزیابی و با شاخص‌های یک مطالعه استاندارد مقایسه شدند. نتایج ارزیابی متدلوژی مطالعات نشان داد که تنها در 3/27 درصد از مطالعات روش نمونه‌برداری، نگهداری و انتقال نمونه‌ها، در 5/15 درصد از مطالعات روش آماده‌سازی و عصاره‌گیری و در 30 درصد از مطالعات روش اندازه‌گیری منطبق بر روش‌های استاندارد انجام شده است. ارزیابی کنترل کیفی مطالعات نشان داد که تنها در 9/20 درصد از مطالعات برخی از شاخص‌های کنترل و تضمین کیفیت نتایج مورد ارزیابی قرار گرفته است. ارزیابی غلظت نیترات در محصولات نشان داد که میانگین وزنی غلظت نیترات در سیب‌زمینی 7/98، خیار 9/120، گوجه‌فرنگی 7/40، پیاز 6/39، هندوانه 9/19، خربزه 9/62، هویج 1/151، بادمجان 2/235، انواع فلفل 329، سایر سبزیجات غده‌ای و ریشه‌ای 4/542، کاهو 7/907، اسفناج 4/995، کرفس 4/1093، حبوبات تازه‌ خوری 7/37، جعفری 5/596، انواع کلم 7/414، سایر سبزیجات برگی 6/635، سیب درختی 4/32 و پرتقال 2/37 میلی‌گرم در کیلوگرم وزن تازه بود. تحقیق حاضر نشان داد که میانگین غلظت نیترات در محصولات کشاورزی تولید شده در ایران کمتر از حداکثر سطوح مجاز توصیه شده در استاندارد ملی ایران و سایر استاندارد‌های جهانی است. بنابراین، می‌توان نتیجه گرفت که به‌طور کلی نگرانی جدی از نظر وجود غلظت بیش از حد نیترات در محصولات کشاورزی تولید شده در فضای باز کشور وجود ندارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of nitrate status in agricultural products of Iran and criticism of published studies – a review study

نویسندگان [English]

  • Meysam Cheraghi 1
  • Karim Shahbazi 2
  • Arzhang Fathi Gerdelidani 3
  • Kambiz Bazargan 4
  • Mostafa Marzi 4
  • kobra sadat hasheminasab zavareh 4
  • Mehdi Beheshti 5
1 Ph.D. student, Department of Soil Science and Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Iran.
2 Soil and Water Research Institute, Agricultural Research, Education, and Extension Organization, Karaj, Iran
3 Ph.D Graduate, Department of Soil Science and Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Iran
4 Agricultural Research, Education and Extension Organization (AREEO), Soil and Water Research Institute (SWRI), Karaj, Iran.
5 Ph.D. Graduate, Department of Soil Science and Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Iran.
چکیده [English]

In the process of conducting this research, 110 studies on monitoring nitrate content in agricultural products produced in Iran were gathered. These studies were published until March 20, 2023. The collected studies underwent evaluation for methodology, quality control, and quality assurance of results and were then assessed based on standard research criteria. The evaluation of the study's methodology revealed that only 27.3% of the studies adhered to standard methods for sampling, storage, and sample transfer. In 15.5% of the studies, the method of preparation and extraction followed standard procedures. Additionally, in 30% of the studies, the nitrate measurement method was conducted according to established standard procedures. The evaluation of quality control in the studies showed that only 20.9% reported some indicators of quality control and assurance. The assessment of nitrate concentration in agricultural products revealed the weighted mean concentrations of nitrate (mg kg-1 fresh weight) as follows: potato 98.7, cucumber 120.9, tomato 40.7, onion 39.6, watermelon 19.9, melon 62.9, carrot 151.1, eggplant 235.2, peppers 329, other root and tuber vegetables 542.4, lettuce 907.7, spinach 995.4, celery 1093.4, fresh edible legumes 37.7, parsley 596.5, cabbages 414.7, other leafy vegetables 635.6, apple 32.4, and orange 37.2. The findings of the present research reveal that the mean nitrate concentrations in Iran’s agricultural products fall below the maximum permissible levels outlined by both the Iranian national standard and international standards. As a result, it can be generally concluded that there is no significant cause for concern regarding residual nitrate concentration in Iran’s agricultural products.

کلیدواژه‌ها [English]

  • Agricultural products
  • Nitrate
  • Nitrate accumulation
  • Standard methods
  • Quality control

Investigation of nitrate status in agricultural products of Iran and criticism of published studies - a review study

 

EXTENDED ABSTRACT

Aims

The impact of residual nitrate in agricultural products on human health is a concerning issue that intermittently captures the attention of the media and public opinion. Elevated nitrate concentrations exceeding the permissible levels in food products may heighten the risk of gastrointestinal cancer and methemoglobinemia in infants. On a macroeconomic scale and for the nation's economy, the presence of excessive nitrate in agricultural products can result in non-acceptance by other countries, occasionally leading to the return of these products. Given the significance of this matter and recognizing that nearly 80% of the nitrate in the human diet originates from the consumption of agricultural products, particularly vegetables, accurate and precise measurement of nitrate concentration in these products becomes paramount.

Methodology

In this study, we aimed to present a comprehensive overview of the nitrate concentration in agricultural products across Iran at a national scale. This was achieved through a quantitative and qualitative analysis of published studies in the field. To conduct this research, we gathered 110 studies, including papers, theses, and final reports of research projects, focusing on monitoring nitrate content in agricultural products grown in Iran, and covering publications until March 20, 2023. Initially, these studies underwent evaluation concerning methodology, quality control, and quality assurance, following which they were assessed based on standard research criteria. The evaluation specifically focused on the methodology and quality of the studies used to determine the nitrate status of Iranian agricultural products. Only studies meeting the minimum quality criteria were included in the final analysis of this research.

Results

The evaluation of the study's methodology revealed that, in only 27.3% of the studies, the method of sampling, storage, and sample transfer; in 15.5% of the studies, the method of preparation and extraction; and in 30% of the studies, the method of nitrate measurement (including 14.5% zinc rod, 3.6% cadmium column, 8.2% high-performance liquid chromatography, and 3.6% ion chromatography) adhered to standard methods. The assessment of quality control in the studies demonstrated that only 20.9% reported some criteria of quality control and assurance. These criteria included calculating recovery percentage (15.5%), using certified reference materials or CRM (1.8%), and determining the limit of detection (16.4%) and the limit of quantification (18.2%). Based on the evaluation of methodology and quality control, nitrate concentrations published in 74.5% of the studies, which accounted for 15,203 samples (65.4% of all samples analyzed in the studies), met the minimum quality required for inclusion in the final analysis of this research. These data were utilized in the assessment of nitrate status in agricultural products in Iran. However, 34.6% of the studies (including the analysis results of 8057 samples) did not meet the minimally acceptable quality and were consequently excluded. The evaluation of nitrate concentration in agricultural products unveiled the weighted mean concentrations of nitrate (mg kg-1 fresh weight) as follows: potato 98.7, cucumber 120.9, tomato 40.7, onion 39.6, watermelon 19.9, melon 62.9, carrot 151.1, eggplant 235.2, peppers 329, other root and tuber vegetables 542.4, lettuce 907.7, spinach 995.4, celery 1093.4, fresh edible legumes 37.7, parsley 596.5, cabbages 414.7, other leafy vegetables 635.6, apple 32.4, and orange 37.2.

Conclusions

Current research reveals that mean nitrate concentrations in Iran’s agricultural products are lower than the maximum permissible levels recommended by both the Iranian national standard and international standards. Consequently, it can be generally concluded that there is no serious concern about residual nitrate concentration in Iran’s agricultural products. Nitrate levels in agricultural products are crucial for food security, community health, and the associated social and economic effects. Therefore, studies in this area must strictly adhere to the steps and guidelines for measuring, controlling, and ensuring the quality of analyses, following both national and international standards. They should be ready to present this adherence if required.

Abdel Mohsen, M. A., Hassan, A. A., El‐Sewedy, S. M., Aboul‐Azm, T., Magagnotti, C., Fanelli, R., & Airoldi, L. (1999). Biomonitoring of N‐nitroso compounds, nitrite, and nitrate in the urine of Egyptian bladder cancer patients with or without Schistosoma haematobium infection. International Journal of Cancer82(6), 789-794.
Alexander, J., Benford, D., Cockburn, A., Cravedi, J.-P., Dogliotti, E., Domenico, A. D., . . . Galli, C. (2008). Nitrate in vegetables Scientific Opinion of the Panel on Contaminants in the Food chain. European Food Safety Authority, 689, 1-79.
Ali, R. A., Muhammad, K. A., & Qadir, O. K. (2021, November). A survey of Nitrate and Nitrite Contents in Vegetables to Assess The Potential Health Risks in Kurdistan, Iraq. In IOP Conference Series: Earth and Environmental Science (Vol. 910, No. 1, p. 012065). IOP Publishing.
Amr, A., & Hadidi, N. (2001). Effect of cultivar and harvest date on nitrate (NO3) and nitrite (NO2) content of selected vegetables grown under open field and greenhouse conditions in Jordan. Journal of Food Composition and Analysis, 14 (1), 59-67.
Anjana, S. U., & Iqbal, M. (2007). Nitrate accumulation in plants, factors affecting the process, and human health implications. A review. Agronomy for Sustainable Development, 27(1), 45-57.
ASTDR. (2017). ATSDR Case Studies in Environmental Medicine Nitrate/Nitrite Toxicity. Agency for Toxic Substances and Disease Registry.
Barradas, J., & Sampaio, P. (2017). ISO 9001 and ISO/IEC 17025: Which is the best option for a laboratory of metrology? The Portuguese experience. International Journal of Quality & Reliability Management34(3), 406-417.
Belitz, H.-D., & Grosch, W. (1999). Food Chemistry. Berlin. Springer-Verlag. 992 p.
Bian, Z., Wang, Y., Zhang, X., Li, T., Grundy, S., Yang, Q., & Cheng, R. (2020). A review of environment effects on nitrate accumulation in leafy vegetables grown in controlled environments. Foods, 9(6), 732.
Blom-Zandstra, M., & Lampe, J. E. (1985). The role of nitrate in the osmoregulation of lettuce (Lactuca sativa L.) grown at different light intensities. Journal of Experimental Botany, 36(7), 1043-1052.
Blob‐zandstra, M. (1989). Nitrate accumulation in vegetables and its relationship to quality. Annals of Applied Biology, 115(3), 553-561.
Borlotti, A., Vigani, G., & Zocchi, G. (2012). Iron deficiency affects nitrogen metabolism in cucumber (Cucumis sativusL.) plants. BMC Plant Biology, 12(1), 1-15.
Burns, I. G., Zhang, K., Turner, M. K., Lynn, J., McClement, S., Hand, P., & Pink, D. (2011). Genotype and environment effects on nitrate accumulation in a diversity set of lettuce accessions at commercial maturity: the influence of nitrate uptake and assimilation, osmotic interactions and shoot weight and development. Journal of the Science of Food and Agriculture, 91(12), 2217-2233.
Cataldo, D., Maroon, M., Schrader, L. E., & Youngs, V. L. (1975). Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science and Plant Analysis, 6(1), 71-80.
Cavaiuolo, M., & Ferrante, A. (2014). Nitrates and glucosinolates as strong determinants of the nutritional quality in rocket leafy salads. Nutrients, 6(4), 1519-1538.
CFS, Centre for Food Safety Food and Environmental Hygiene Department. (2010). Nitrate and Nitrite in Vegetables Available in Hong Kong. Risk Assessment Studies, Report No. 40.
Chang, A. C., Yang, T. Y., & Riskowski, G. L. (2013). Ascorbic acid, nitrate, and nitrite concentration relationship to the 24 hour light/dark cycle for spinach grown in different conditions. Food Chemistry138(1), 382-388.
Chapman, H. D., & Pratt, P. F. (1961). Methods of analysis for soils, plants and waters. Division of Agricultural Sciences. University of California, Berkeley, 169-176.
Cheraghi, M., Motesharezadeh, B., & Alikhani, H. A. (2020). Nutritional and morpho-physiological responses of tomato plant (Lycopersicon esculentum Mill) affected by biological and chemical fertilizers. Iranian Journal of Soil and Water Research51(10), 2559-2574. (In Persian).
Cheraghi, M., Motesharezadeh, B., Alikhani, H. A., & Mousavi, S. M. (2023a). Optimal management of plant nutrition in tomato (Lycopersicon esculent Mill) by using biologic, organic and inorganic fertilizers. Journal of Plant Nutrition46(8), 1560-1579.
Cheraghi, M., Motesharezadeh, B., Mousavi, S. M., Ma, Q., & Ahmadabadi, Z. (2023b). Silicon (Si): a regulator nutrient for optimum growth of wheat under salinity and drought stresses-a review. Journal of Plant Growth Regulation, 1-25.
Chung, S., Kim, J., Kim, M., Hong, M., Lee, J., Kim, C., & Song, I. (2003). Survey of nitrate and nitrite contents of vegetables grown in Korea. Food Additives & Contaminants, 20(7), 621-628.
Colla, G., Cardarelli, M., Bonini, P., & Rouphael, Y. (2017). Foliar applications of protein hydrolysate, plant and seaweed extracts increase yield but differentially modulate fruit quality of greenhouse tomato. HortScience, 52(9), 1214-1220.
Colla, G., Kim, H.-J., Kyriacou, M. C., & Rouphael, Y. (2018). Nitrate in fruits and vegetables. Scientia Horticulturae, 237, 221-238.
Colla, G., & Rouphael, Y. (2015). Biostimulants in horticulture. Scientia Horticulturae, 196, 1-134.
Colla, G., Suarez, C. M. C., Cardarelli, M., & Rouphael, Y. (2010). Improving nitrogen use efficiency in melon by grafting. HortScience, 45(4), 559-565.
Corré, W. J., & Breimer, T. (1979). Nitrate and nitrite in vegetables: Pudoc.
Cottenie, A. (1980). Soil and plant testing as a basis of fertilizer recommendations (No. 38/2).
Dejonckheere, W., Steurbaut, W., Drieghe, S., Verstraeten, R., & Braeckman, H. (1994). Nitrate in food commodities of vegetable origin and the total diet in Belgium (1992-1993). MAN Microbiologie, Aliments, Nutrition, 12(4), 359-370.
Dogan, A., Kazankaya, A., & Balta, M. F. (2008). Nitrate and nitrite levels of some fruit species grown in Van, Turkey. Asian Journal of Chemistry, 20(2), 1191.
Dong, J., Li, X., Chu, W., & Duan, Z. (2017). High nitrate supply promotes nitrate assimilation and alleviates photosynthetic acclimation of cucumber plants under elevated CO2. Scientia Horticulturae, 218, 275-283.
Donner, S. D., & Kucharik, C. J. (2003). Evaluating the impacts of land management and climate variability on crop production and nitrate export across the Upper Mississippi Basin. Global Biogeochemical Cycles17(3).
Du, S.-T., Zhang, Y.-S., & Lin, X.-Y. (2007). Accumulation of nitrate in vegetables and its possible implications to human health. Agricultural Sciences in China, 6(10), 1246-1255.
Dux, J. (2013). Handbook of quality assurance for the analytical chemistry laboratory. Springer Science & Business Media.
Ebrahimi, R., Ahmadian, A., Ferdousi, A., Zandi, S., Shahmoradi, B., Ghanbari, R., ... & Yetilmezsoy, K. (2020). Effect of washing and cooking on nitrate content of potatoes (cv. Diamant) and implications for mitigating human health risk in Iran. Potato Research63, 449-462.
Ekart, K., Hmelak Gorenjal, A., Madorran, E., Lapajne, S., & Langerholc, T. (2013). Study on the influence of food processing on nitrate levels in vegetables. EFSA Supporting Publications, 10(12), 514E.
Elia, A., Conversa, G., & Gonnella, M. (2000). Dosi di azoto, produzione e accumulo di nitrati in lattuga allevata in idrocoltur. In Atti V Giornate Scientifiche SOI (pp. 229-230). Società di Ortoflorofrutticoltura Italiana (SOI).
Elia, A., Santamaria, P., & Serio, F. (1998). Nitrogen nutrition, yield and quality of spinach. Journal of the Science of Food and Agriculture, 76(3), 341-346.
EN 1882, European Commission. (2006). Commission Regulation (EC) No 1882/2006 of 19 December 2006 laying down methods of sampling and analysis for the official control of the levels of nitrates incertain foodstuffs. Off J Eur Union, 364, 32-43.
EN 12014-1, E. C. f. S. (1997). Foodstuffs - Determination of Nitrate and/or Nitrite Content - Part 1: General Considerations. European Committee for Standardization (CEN)(ICS Code (Food products in general): 67.040), 9.
EN 12014-2, E. C. f. S. (2017). Foodstuffs - Determination of nitrate and/or nitrite content - Part 2: HPLC/IC method for the determination of nitrate content of vegetables and vegetable products. European Committee for Standardization. ICS Code (Vegetables and derived products): 67.080.20, 22 pages, 22.
EN 12014-5, E. C. f. S. (1997). Vegetables and vegetable products -( Used in food for babies and infants) – Determination of nitrate and/or nitrite content Part 5: Enzymatic determination of nitrate content. European Committee for Standardization. ICS Code (Prepackaged and prepared foods): 67.230, 12 pages, 12.
EN 12014-7, E. C. f. S. (1998). Foodstuffs - Determination of Nitrate and/or Nitrite Content - Part 7: Continuous Flow Method for the Determination of Nitrate Content of Vegetables and Vegetable Products After Cadmium Reduction. European Committee for Standardization (CEN). ICS Code (Fruits. Vegetables): 67.080, 13.
EU 1258. (2011). COMMISSION REGULATION (EU) No 1258/2011 of 2 December 2011, amending Regulation (EC) No 1881/2006 as regards maximum levels for nitrates in foodstuffs. Official Journal of the European Union.
EU Scientific Committee for Food. (1995). Opinion on nitrate and nitrite (expressed on 22 September 1995), Annex 4 to document III/56/95, CS/CNTM/NO3/20‐FINAL.
Feng, J.-F., Shi, Z., Wu, Y., Wu, H., & Zhao, Y. (2006). Assessment of nitrate exposure in Beijing residents via consumption of vegetables. Chinese Journal of Food Hygiene, 18(6), 514-516.
Funk, W., Dammann, V., & Donnevert, G. (2007). Quality assurance in analytical chemistry: applications in environmental, food and materials analysis, biotechnology, and medical engineering: John Wiley & Sons. DOI:10.1002/9783527609444.
Fytianos, K., & Zarogiannis, P. (1999). Nitrate and nitrite accumulation in fresh vegetables from Greece. Bulletin of Environmental Contamination and Toxicology, 62, 187-192.
Gruszecka-Kosowska, A., & Baran, A. (2017). Concentration and health risk assessment of nitrates in vegetables from conventional and organic farming. Human and Ecological Risk Assessment: An International Journal, 23(4), 727-740.
Heisler, E. G., Siciliano, J., Krulick, S., Porter, W. L., & White Jr, J. W. (1973). Nitrate and nitrite content of market potatoes. Journal of Agricultural and Food Chemistry, 21(6), 970-973.
Herencia, J. F., García-Galavís, P. A., Dorado, J. A. R., & Maqueda, C. (2011). Comparison of nutritional quality of the crops grown in an organic and conventional fertilized soil. Scientia Horticulturae, 129(4), 882-888.
Hmelak Gorenjak, A., & Cencič, A. (2013). Nitrate in vegetables and their impact on human health. A review. Acta Alimentaria, 422(2), 172-158.
Honsa, J. D., & McIntyre, D. A. (2003). ISO 17025: Practical benefits of implementing a quality system. Journal of AOAC International86(5), 1038-1044.
Ierna, A. (2009). Influence of harvest date on nitrate contents of three potato varieties for off-season production. Journal of Food Composition and Analysis22(6), 551-555.
ISIRI 4106. (1998). Institute of Standards and Industrial Research, test and measurement of nitrite and nitrate in fruit and vegetable products by their measured molecular spectrum (1998). Standard No. 4106. Iran National Standards Organization. ICS:67.080.01.
ISIRI 6963. (2013). Fruits and vegetables- Potato- Measurins of nitrate and nitrite- Spectrometric method- Test method, Amendment No. 1. Iranian National Standardization Organization-ICS:67.080. (Amendment No.1).
ISIRI 7132. (2013). Fruits and vegetables- Onion- Measurins of nitrate and nitrite- Spectrophotometric method, Amendment No. 1. Iranian National Standardization Organization. ICS: 67.080. (Amendment No.1).
ISIRI 13532. (2010). Foodstuffs –Cereals, vegetables and infants food- Methods of sampling for the nitrates analysis- Code of practice. Institute of Standards and Industrial Research of Iran. ICS:67.020
ISIRI 16596. (2021). Agricultural products -Maximum level for nitrate and test method. Iranian National Standardization Organization. ICS: 65.040.01;65.080, 14 pages, 14.
ISIRI 16721-1. (2013). Foodstuffs-Determination of nitrate and/or nitrite content-Part 1: General considerations. Iranian National Standardization Organization. ICS: 67.050, 14.
ISIRI 16721-5. (2015). Vegetables and vegetable products -( Used in food for babies and infants) – Determination of nitrate and/or nitrite content Part 5: Enzymatic determination of nitrate content. Iranian National Standardization Organization. ICS: 67.080.20, 9 pages, 9.
ISIRI 16721-7. (2015). Vegetables and vegetable products -Determination of nitrate and/or nitrite content Part7-Continuous flow method for the determination of nitrate content after cadmium reduction. Iranian National Standardization Organization. ICS: 67.080.20., 15.
ISO 3365. (1984). vegetables and derived products-Determination of nitrite and nitrate content-Molecular absorption spectrometric method. International Organization for Standardization, Geneva, Switzerland, 4.
Jimidar, M., Hartmann, C., Cousement, N., & Massart, D. (1995). Determination of nitrate and nitrite in vegetables by capillary electrophoresis with indirect detection. Journal of Chromatography A, 706(1-2), 479-492.
Jones, J. B. (2001). Laboratory guide for conducting soil tests and plant analysis: CRC press.
Kalantari, A., Aliasgharzad, N., & Najafi, N. (2022). Nitrate reductase activity, iron and nitrate concentrations in spinach inoculated with two species of Pseudomonas under different nitrogen levels. Water and Soil Science, 32(2 ), 25-41.
Kalra, Y. (Ed.). (1997). Handbook of reference methods for plant analysis. CRC press.
Klesta, E. J., Bartz, J. K., Sparks, D., Page, A., Helmke, P., & Loeppert, R. (1996). Quality assurance and quality control. Methods of Soil Analysis. Part, 3, 19-48.
Knobeloch, L., Salna, B., Hogan, A., Postle, J., & Anderson, H. (2000). Blue babies and nitrate-contaminated well water. Environmental Health Perspectives, 108(7), 675-678.
Konieczka, P., & Namiesnik, J. (2016). Quality assurance and quality control in the analytical chemical laboratory: a practical approach: CRC Press.
Konstantopoulou, E., Kapotis, G., Salachas, G., Petropoulos, S. A., Karapanos, I. C., & Passam, H. C. (2010). Nutritional quality of greenhouse lettuce at harvest and after storage in relation to N application and cultivation season. Scientia Horticulturae125(2), 93-e1.
Kyriacou, M. C., & Rouphael, Y. (2018). Towards a new definition of quality for fresh fruits and vegetables. Scientia Horticulturae, 234, 463-469.
Lin, J.-K., & Yen, J.-Y. (1980). Changes in the nitrate and nitrite contents of fresh vegetables during cultivation and post-harvest storage. Food and Cosmetics Toxicology, 18(6), 597-603.
Lin, K. H., Huang, M. Y., Huang, W. D., Hsu, M. H., Yang, Z. W., & Yang, C. M. (2013). The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Scientia Horticulturae150, 86-91.
Liu, X., Hu, B., & Chu, C. (2022). Nitrogen assimilation in plants: current status and future prospects. Journal of Genetics and Genomics, 49(5), 394-404.
Luo, F., Yan, X.-J., Hu, X.-F., Yan, L.-J., Cao, M.-Y., & Zhang, W.-J. (2022). Nitrate Quantification in Fresh Vegetables in Shanghai: Its Dietary Risks and Preventive Measures. International Journal of Environmental Research and Public Health, 19(21), 14487.
Luo, J., Sun, S., Jia, L., Chen, W., & Shen, Q. (2006). The mechanism of nitrate accumulation in pakchoi [Brassica campestris L. ssp. Chinensis (L.)]. Plant and Soil, 282(1), 291-300.
Marschner, H. (1995). Functions of mineral nutrients: Micronutrients, Mineral Nutrition of higher plants, Marschner, H., Ed.
Mensinga, T. T., Speijers, G. J., & Meulenbelt, J. (2003). Health implications of exposure to environmental nitrogenous compounds. Toxicological Reviews, 22(1), 41-51.
Merino, L., Örnemark, U., & Toldrá, F. (2017). Analysis of nitrite and nitrate in foods: Overview of chemical, regulatory and analytical aspects. Advances in Food and Nutrition Research, 81, 65-107.
Mesley, R. J., Pocklington, W. D., & Walker, R. F. (1991). Analytical quality assurance: a review. Analyst (London. 1877. Print), 116(10), 975-990.
MHRF. (2001). Hygienic requirments for safety and nutritionvalue of food products ministry of health of the Russian federation. Registered with the Ministry of Justice of the RF, March 22, 2002 No. 3326, 492 pages, 492.
Najafi, N., & Parsazadeh, M. (2010). Effect of nitrogen form and pH of nutrient solution on the shoot concentration of phosphorus, nitrate, and nitrogen of spinach in hydroponic culture. Journal of Science and Technology of Greenhouse Culture1(1), 41-56.
Novair, S. B., Cheraghi, M., Faramarzi, F., Lajayer, B. A., Senapathi, V., Astatkie, T., & Price, G. W. (2023). Reviewing the role of biochar in paddy soils: An agricultural and environmental perspective. Ecotoxicology and Environmental Safety, 263, 115228.
Nuñez de González, M. T., Osburn, W. N., Hardin, M. D., Longnecker, M., Garg, H. K., Bryan, N. S., & Keeton, J. T. (2015). A survey of nitrate and nitrite concentrations in conventional and organic‐labeled raw vegetables at retail. Journal of Food Science, 80(5), C942-C949.
Öztekin, N., Nutku, M. S., & Erim, F. B. (2002). Simultaneous determination of nitrite and nitrate in meat products and vegetables by capillary electrophoresis. Food chemistry, 76(1), 103-106.
Pagliano, E., Meija, J., Campanella, B., Onor, M., Iammarino, M., D’Amore, T., . . . Mihai, O. (2019). Certification of nitrate in spinach powder reference material SPIN-1 by high-precision isotope dilution GC–MS. Analytical and Bioanalytical Chemistry, 411, 3435-3445.
Pannala, A. S., Mani, A. R., Spencer, J. P., Skinner, V., Bruckdorfer, K. R., Moore, K. P., & Rice-Evans, C. A. (2003). The effect of dietary nitrate on salivary, plasma, and urinary nitrate metabolism in humans. Free Radical Biology and Medicine, 34(5), 576-584.
Parks, S., Huett, D., Campbell, L., & Spohr, L. (2008). Nitrate and nitrite in Australian leafy vegetables. Australian Journal of Rgricultural Research, 59(7), 632-638.
Penttila, P. (1998). Estimation of food additive and pesticide intakes by means of a stepwise method.
Petersen, A., & Stoltze, S. (1999). Nitrate and nitrite in vegetables on the Danish market: content and intake. Food Additives & Contaminants, 16(7), 291-299.
Proietti, S., Moscatello, S., Giacomelli, G. A., & Battistelli, A. (2013). Influence of the interaction between light intensity and CO2 concentration on productivity and quality of spinach (Spinacia oleracea L.) grown in fully controlled environment. Advances in Space Research, 52(6), 1193-1200.
Proietti, S., Rouphael, Y., Colla, G., Cardarelli, M., De Agazio, M., Zacchini, M., . . . Battistelli, A. (2008). Fruit quality of mini‐watermelon as affected by grafting and irrigation regimes. Journal of the Science of Food and Agriculture, 88(6), 1107-1114.
Quijano, L., Yusà, V., Font, G., McAllister, C., Torres, C., & Pardo, O. (2017). Risk assessment and monitoring programme of nitrates through vegetables in the Region of Valencia (Spain). Food and Chemical Toxicology100, 42-49.
Rathod, K. S., Velmurugan, S., & Ahluwalia, A. (2016). A ‘green’diet‐based approach to cardiovascular health? Is inorganic nitrate the answer? Molecular Nutrition & Food Research, 60(1), 185-202.
Riens, B., & Heldt, H. W. (1992). Decrease of nitrate reductase activity in spinach leaves during a light-dark transition. Plant Physiology, 98(2), 573-577.
Saeedifar, F., Ziarati, P., & Ramezan, Y. (2014). Nitrate and Heavy Metal Contents in Eggplant (Solanum melongena) cultivated in the farmlands in the south of Tehran-Iran. International Journal of Farming and Allied Sciences, 3(1), 60-65.
Santamaria, P. (2006). Nitrate in vegetables: toxicity, content, intake and EC regulation. Journal of the Science of Food and Agriculture, 86(1), 10-17.
Santamaria, P., Elia, A., Serio, F., & Todaro, E. (1999). A survey of nitrate and oxalate content in fresh vegetables. Journal of the Science of Food and Agriculture, 79(13), 1882-1888.
Santamaria, P., Gonnella, M., Elia, A., Parente, A., & Serio, F. (2001). Ways of reducing rocket salad nitrate content. Acta Horticulturae, 529-536.
Sebaei, A. S., & Refai, H. M. (2021). Hazard index: probabilistic risk exposure of nitrate and nitrite in Egyptian fruits and vegetables. International Journal of Environmental Analytical Chemistry, 101(10), 1477-1484.
Shahbazi, K., Cheraghi, M., Marzi, M., & Hasheminasab Zavareh, K. S. (2022a). The effect of extractant type and soil/extractant ratio on the extraction of soil available potassium. Iranian Journal of Soil and Water Research, 53(7), 1481-1497. (In persian).
Shahbazi, K., Fathi-Gerdelidani, A., & Marzi, M. (2022b). Investigation of the status of heavy metals in soils of Iran: A comprehensive and critical review of reported studies. Iranian Journal of Soil and Water Research, 53(5), 1163-1212. (In persian).
Shahlaei, A., Ansari, N. A., & Dehkordie, F. S. (2007). Evaluation of nitrate and nitrite content of Iran Southern (Ahwaz) vegetables during winter and spring of 2006. Asian J. Plant Sci6(1), 97-12.
Singh, J. (1988). A rapid method for determination of nitrate in soil and plant extracts. Plant and Soil, 110(1), 137-139.
Siomos, A. S., & Dogras, C. C. (2000). Nitrates in vegetables produced in Greece. Journal of vegetable crop production5(2), 3-13.
Smyatskay, Y., Pankina, I., Kulikova, L., & Sobgaida, D. (2020). Nitrate content in vegetables and fruits in Russia and Mongolia. In E3S Web of Conferences (Vol. 161, p. 01066). EDP Sciences.
Speijers, G., & Van den Brandt, P. (2003). Nitrite and potential endogenous formation of N-nitroso compounds; safety evaluation of certain food additives, JECFA. WHO Food Additives Series, 50, 49-74.
Spiegelhalder, B., Eisenbrand, G., & Preussmann, R. (1976). Influence of dietary nitrate on nitrite content of human saliva: possible relevance to in vivo formation of N-nitroso compounds. Food and Cosmetics Toxicology, 14(6), 545-548.
Suh, J., Paek, O. J., Kang, Y., Ahn, J. E., Jung, J. S., An, Y. S., . . . Lee, K.-H. (2013). Risk assessment on nitrate and nitrite in vegetables available in Korean diet. Journal of Applied Biological Chemistry, 56(4), 205-211.
Sušin, J., Kmecl, V., & Gregorčič, A. (2006). A survey of nitrate and nitrite content of fruit and vegetables grown in Slovenia during 1996–2002. Food Additives and Contaminants, 23(4), 385-390.
Tamme, T., Reinik, M., Püssa, T., Roasto, M., Meremäe, K., & Kiis, A. (2010). Dynamics of nitrate and nitrite content during storage of home-made and small-scale industrially produced raw vegetable juices and their dietary intake. Food Additives and Contaminants, 27(4), 487-495.
Tamme, T., Reinik, M., Roasto, M., Juhkam, K., Tenno, T., & Kiis, A. (2006). Nitrates and nitrites in vegetables and vegetable-based products and their intakes by the Estonian population. Food Additives and Contaminants, 23(4), 355-361.
Temme, E. H., Vandevijvere, S., Vinkx, C., Huybrechts, I., Goeyens, L., & Van Oyen, H. (2011). Average daily nitrate and nitrite intake in the Belgian population older than 15 years. Food Additives & Contaminants: Part A, 28(9), 1193-1204.
Thomson, B. (2004). Nitrates and nitrites dietary exposure and risk assessment: prepared as part of a New Zealand Food Safety Authority contract for scientific services: Institute of Environmental Science & Research Limited.
Uddin, R., Thakur, M. U., Uddin, M. Z., & Islam, G. (2021). Study of nitrate levels in fruits and vegetables to assess the potential health risks in Bangladesh. Scientific Reports, 11(1), 1-9.
Ulrich, A. (1959). Plant analysis: A guide for sugar beet fertilization (Vol. 766). California Agricultural Experiment Station.
UP2020-0012, U. s. (2020). Ukraine's Maximum Residue Levels (MRLs) for Certain Contaminants. Report Number: UP2020-0012, 25.
Wallinga, I., Van Vark, W., Houba, V., & Van der Lee, J. (1989). Soil and plant analysis, series of syllabi part 7, Plant analysis procedure. Wageningen Agriculture University, Wageningen.
Wiedenhoeft, A. C. (2006). Plant nutrition: Infobase Publishing.
Xu, G., Fan, X., & Miller, A. J. (2012). Plant nitrogen assimilation and use efficiency. Annual review of plant biology63, 153-182.
Ye, X., Chen, X. F., Deng, C. L., Yang, L. T., Lai, N. W., Guo, J. X., & Chen, L. S. (2019). Magnesium-deficiency effects on pigments, photosynthesis and photosynthetic electron transport of leaves, and nutrients of leaf blades and veins in Citrus sinensis seedlings. Plants8(10), 389.
Ysart, G., Clifford, R., & Harrison, N. (1999). Monitoring for nitrate in UK-grown lettuce and spinach. Food Additives & Contaminants16(7), 301-306.
Zealand, F. S. A. N. (2011). Survey of nitrates and nitrites in food and beverages in Australia. In: Food Standards Australia New Zealand Canberra (Australia).
Zhou, Z. Y., Wang, M. J., & Wang, J. S. (2000). Nitrate and nitrite contamination in vegetables in China. Food Reviews International16(1), 61-76.