Abolhasani Zeratkar, M., & Lakzian, A. (2023). Evaluation organoclay produced using magnetite nanoparticles and bacterial exopolysachharide and therir effects on urease, phosphatase and dehydrogenase soil enzymes. Iranian Journal of Soil and Water Research, 53, 2721-238.
https://doi.org/10.22059/ijswr.2022.348435.669358 (In persian).
Alboghbeish, M., Larki, A., & Saghanezhad, S. J. (2022). Effective removal of Pb (II) ions using modified magnetic graphene oxide nanocomposite; optimization by response surface methodologhy.
Scientific Reports, 12, 9658.
https://doi.org/10.1038/s41598-022-13959-8.
Al-Ghouti, M. A., & Daana, D. A., (2020). Guidelines for the use and interpretation of adsorption isotherm models: a review.
Journal of Hazardous Materials, 393, 122383. http://doi.
10.1016/j.jhazmat.2020.122383.
Ali, S. A., Kazi, I. W., & Ullah, N. (2015). New chelating ion-exchange resin synthesized via the cyclopolymerization protocol and its uptake performance for metal ion removal.
Industrial and Engineering Chemistry Research, 54, 9689–9698.
https://doi.org/10.1021/acs.iecr.5b02267.
Arruebo, M., Fernandez-Pacheco, R., Irusta, S., Arbiol, J., Ibarra, M.R., & Santamaria, J. (2006). Sustained release of doxorubicin from zeolite-magnetite nanocomposites prepared by mechanical activation. Nanotechnology, 17, 4057–4064. http://doi.10.1088/0957-4484/17/16/011.
Banerjee, S. S., & Chen, D. H. (2007). Fast removal of copper ions by gum Arabic modified magnetic nano-adsorbent.
Journal of Hazardous Materials, 147, 792–799.
http://doi.
10.1016/j.jhazmat.2007.01.079.
Barraque, F., Montes, M. L., Fernandez, M. A., Mercader, R. C., Candal, R. J., & Torres, R. M., (2018). Synthesis and characterization of magnetic-montmorillonite and magnetic-organo-montmorillonite: surface sites involved on cobalt sorption.
Journal of Magnetism and Magnetic Materials, 466, 376–384.
http://dx.doi.org/10.1016/j.jmmm.2018.07.052.
Bourliva, A., Michailidis, K., Sikalidis, C., & Filippidis, A. (2013). Spectroscopic and thermal study of bentonites from Milos Island, Greece.
Bulletin of the Geological of Society of Greece, 47, 2020–2029.
https://doi.org/10.12681/bgsg.11030.
Bourliva, A., Michailidis, K., Sikalidis, C., Filippidis, A., & Betsiou, M. (2013). Lead removal from aqueous solutions by natural Greek bentonites. Clay Minerals, 48(5), 771-787. https://doi.org/10.1180/claymin.2013.048.5.09.
Bruce, I. J., Taylor, J., Todd, M., Davies, M. J., Borioni, E., Sangregorio, C., & Sen, T. (2004). Synthesis, characterisation and application of silica-magnetite nanocomposites. Journal of Magnetism and Magnetic Materials, 284, 145–160. https://doi.org/10.1016/j.jmmm.2004.06.032.
Chen, D., Shen, W., Wu, S., Chen, C., Luo, X., & Guo, L. (2016). Ion exchange induced removal of Pb(II) by MOF-derived magnetic inorganic sorbents.
Nanoscale, 8, 7172–7179.
https://doi.org/10.1039/C6NR00695G.
Chun, C. L., Hozalski, R. M., & Arnold, T. A. (2005). Degradation of drinking water disinfection byproducts by synthetic goethite and magnetite.
Environmental Science and Technology, 39, 8525–8532. http://doi.
10.1021/es051044g.
Cornell, R. M., & Schwertmann, U. (2003). The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, 2nd Edition, Wiley-VCH, Weinheim, 2003. http;//doi.10.1002/3527602097.
Dehmani, Y., Alrashdi, A. A., Lgaz, H., Lamhasni, T., Abouarnadasse, S., & Chung, I. M. (2020). Removal of phenol from aqueous solution by adsorption onto hematite (α-Fe
2O
3): mechanism exploration from both experimental and theoretical studies.
Arabian Journal of Chemistry, 13, 5474–5486.
https://doi.org/10.1016/j.arabjc.2020.03.026.
Demirbas, E., Kobya, M., Senturk, E., & Ozkan, T. (2004). Adsorption kinetics for the removal of chromium (VI) from aqueous solutions on the activated carbons prepared from agricultural wastes. Water SA, 30, 533–539. http://dx.doi.org/10.4314/wsa.v30i4.5106.
Dinh, V. P., Nguyen, M. D., Nguyen, Q. H., Do, T. T., Luu, T. T., Luu, A. T., Tap, T. D., Ho, T. H., Phan, T. P., Nguyen, T. D., & Tan, L. V. (2020). Chitosan-MnO
2 nanocomposite for effective removal of Cr (VI) from aqueous solution.
Chemosphere, 257, 127147. http://doi.
10.1016/j.chemosphere.2020.127147.
Dinh, V. P., Tran, N. Q., Le, N. Q. T., Tran, Q. H., Nguyen, T. D., & Le, V. T. (2019). Facile synthesis of FeFe
2O
4 magnetic nanomaterial for removing methylene blue from aqueous solution.
Progress in Natural Science: Materials International, 29, 648–654. https://doi.
10.1016/j.pnsc.2019.11.009.
Dinh, V. P., Xuan, T. D., Hung, N. Q., Luu, T. T., Do, T. T., Nguyen, T. D., Nguyen, V. D., Anh, T. T. K., & Tran, N. Q., (2021). Primary biosorption mechanism of lead (II) and cadmium (II) cations from aqueous solution by pomelo (Citrus maxima) fruit peels.
Environmental Science and Pollution Research, 28(45). http://doi.
10.1007/s11356-020-10176-6.
Dong, L., Pan, S., Liu, J., Wang, Z., Hou, L. A., & Chen, G. (2020). Performance and mechanism of Pb (II) removal from water by the spent biological activated carbon (SBAC) with different using-time.
Journal of Water Process Engineering, 36, 101255. http://doi.
10.1016/j.jwpe.2020.10125.5.
Elmi, F., Hosseini, T., Taleshi, M.S. & Taleshi, F. (2017). Kinetic and thermodynamic investigation into the lead adsorption process from wastewater through magnetic nanocomposite Fe
3O
4/CNT.
Nanotechnology for Environmental Engineering. 2, 13.
https://doi.org/10.1007/s41204-017-0023-x.
Erdem, M., Gur, F., & Tumen, F. (2004). Cr (VI) reduction in aqueous solutions by siderite,
Journal of Hazardous Materials, 113, 219–224. http://doi.
10.1016/j.jhazmat.2004.06.012.
Fayazi, M. (2019). Facile hydrothermal synthesis of magnetic sepiolite clay for removal of Pb (II) from aqueous solutions. Analytical and Bioanalytical Chemistry Research, 6, 125-136.
Feltin, N., Pileni, M.P. (1997). New technique to make ferrite nanosized particles. Journal de Physique Archives, 7, 609–610. https://doi.org/10.1051/jp4:19971252.
Foo, K.Y., & Hameed, B.H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156, 2–10. https://doi.org/10.1016/j.cej.2009.09.013.
Gupta, S. S., & Bhattacharyya K. G. 2006. Removal of Cd (II) from aqueous solution by kaolinite, montmorillonite and their poly (oxo zirconium) and tetrabutylammonium derivatives.
Journal of Hazardous Materials, B128, 247– 257. https://doi.
10.1016/j.jhazmat.2005.08.008.
Hamidpour, M., Kalbasi, M., Afyuni, M., Shariatmadari, H., Furrer, G. (2011). Sorption lead on Iranian bentonite and zeolite: Kinetics and isotherms. Environmental Earth Sciences, 62, 559-568. https://doi.10.1007/s12665-010-0547-x.
Hayati, A. M. (2012). Use of FTIR spectroscopy in the characterization of natural and treated nanostructured bentonites (montmorillonites). Particulate Science and Technology, 30, 553–564. http://doi.10.1080/02726351.2011.615895.
Ho, Y. S., & Mckay, G. (2002). Application of kinetic models to the sorption of copper on to peat. Adsorption Science & Technology, 20, 797-815. http://dx.doi.org/10.1260/026361702321104282.
Ho, Y.S., & Mckay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465. https://doi.org/10.1016/S0032-9592(98)00112-5.
Hu, J., Chen, G. H., & Lo, I. M. C. (2005). Removal and recovery of Cr (VI) from wastewater by maghemite nanoparticles. Water Research., 39, 4528–4536. http://doi.org/10.1016/j.waters.2005.05.051.
Huang, Z., Li, Y., Chen, W., Shi, J., Zhang, N., Wang, X., Li, Z., Gao, L., & Zhang, Y. (2017). Modified bentonite adsorption of organic pollutants of dye wastewater.
Material Chemistry and Physics, 202, 266–276. http://doi.
10.1016/j.matchemphys.2017.09.028.
Humelnicu, D., Dinu, M. V., & Dragan, E. S. (2011). Adsorption characteristics of UO22+ and Th4+ ions from simulated radioactive solutions onto chitosan/clinoptilolite sorbents. Journal of Hazardous Materials, 185, 447–455. https://doi.org/10.1016/j.jhazmat.2010.09.053.
Kang, Y.S., Risbud, S., Rabolt, J. F., Stroeve, P. (1996). Synthesis and characterization of nanometer-size Fe3O4 and gamma-Fe2O3 particles.
Chemistry of Materials, 8, 2209–2211. h
ttps://doi.org/10.1021/cm960157j.
Lagergren, S. (1898). Zur theorie der sogenannten adsorptiongeloster stoffe. Handlingar, 24, 1-39. https://doi.10.1007/BF01501332.
Lalvani, S. B., Hubner, A., & Wiltowski, T. S. (2010). Chromium adsorption by lignin. Energy Source, 22, 45–56. https://doi.org/10.1080/00908310050014207.
Liang, M., Wang, D., Zhu, Y., Zhu, Z., Li, Y., & Huang, C. P. (2018). Nano-hematite bagasse composite (n-HBC) for the removal of Pb (II) from dilute aqueous solutions.
Journal of Water Process Engineering, 21, 69–76. http://doi.
10.1016/j.jwpe.2017.11.014
Liang, X., Xu, Y., Wang, L., Sun, Y., Lin, D., Sun, Y., Qin, X., & Wan, Q. (2013). Sorption of Pb2+ on mercapto functionalized sepiolite.
Chemosphere, 90, 548–555.
https://doi.org/10.1016/j.chemosphere.2012.08.027.
Liu, B., Lv, X., Meng, X., Yu, G., & Wang, D. (2013). Removal of Pb (II) from aqueous solution using dithiocarbamate modified chitosan beads with Pb (II) as imprinted ions. Chemical Engineering Journal, 220, 412–419. https://doi.org/10.1016/j.cej.2013.01.071.
Liu, C. H., Chuang, Y. H., Chen, T. Y., Tian, Y., Li, H., Wang, M. K., & Zhang, W. (2015). Mechanism of arsenic adsorption on magnetite nanoparticles from water: thermodynamic and spectroscopic studies.
Environmental science and Technology, 49, 7726–7734.
https://doi.org/10.1021/acs.est.5b00381.
Lunge, S., Singh, S., & Sinha, A. (2014). Magnetic iron oxide (Fe
3O
4) nanoparticles from tea waste for arsenic removal.
Journal of Magnetism and Magnetic Materials, 356, 21–31.
https://doi.org/ 10.1016/j.jmmm.2013.12.008.
Matlock, M. M., Howerton, B. S., & Atwood, D. A., (2002). Chemical precipitation of lead from lead battery recycling plant wastewater.
Industrial and Engineering Chemistry Research, 41, 1579–1582. http://doi.
10.1021/IE010800Y.
Montes, M. L., Barraque, F., Bursztyn Fuentes, A. L., Taylor, M. A., Mercader, R. C., Miehe-Brendle, J., & Torres, R. M. (2020). Effect of synthetic beidellite structural characteristics on the properties of beidellite/Fe oxides magnetic composites as Sr and Cs adsorbent materials.
Materials Chemistry and Physics, 245, 122760.
https://doi.org/ 10.1016/j.matchemphys.2020.122760.
Muthuraman, R. M., Murugappan, A., & Soundharajan, B. (2021). Highly effective removal of presence of toxic metal concentrations in the wastewater using microalgae and pre-treatment processing.
Applied Nanoscience, 13(1). http://doi.
10.1007/s13204-021-01795-7.
Ngomsik, A. F., Bee, A., Draye, M., Cote, G., & Cabuil, V. (2005). Magnetic nano and microparticles for metal removal and environmental applications: a review.
Comptes Rendus Chimie, 8(6-7), 963–970.
https://doi.org/10.1016/j.crci.2005.01.001.
Novakova, A. A., Lanchinskaya, V. Y., Volkov, A. V., Gendler, T. S., Kiseleva, T. Y., Moskvina, M. A., & Zezin, S. B. (2003). Magnetic properties of polymer nanocomposites containing iron oxide nanoparticles, J
ournal of Magnetism and Magnetic Materials, 258, 354–357. http://doi.
10.1016/S0304-8853(02)01062-4.
Oliveira, L. C. A., Rios, R. V. R., Fabris, J. D., Sapag, K., Garg, V. K., & Lago, R.M. (2003). Clay-iron oxide magnetic composites for the adsorption of contaminants in water.
Applied Clay Science, 22, 169–177. http://doi.
10.1016/S0169-1317(02)00156-4.
Orbell, J. D., Godhino, L., Bigger, S. W., Nguyen, T. M., & Ngeh, L. N. (1997). Oil spill remediation using magnetic particles—an experiment in environmental technology, Journal of Chemical Education, 74, 1446–1448. http://doi. 10.1021/ed074p1446.
Ozdes, D., Duran, C., & Senturk, H. B. (2011). Adsorptive removal of Cd (II) and Pb (II) ions from aqueous solutions by using Turkish illitic clay.
Journal of Environmental Management, 92, 3082-3090. http://doi.
10.1016/j.jenvman.2011.07.022.
Pan, M., Lin, X., Xie, J., & Huang, X. (2017). Kinetic, equilibrium and thermodynamic studies for phosphate adsorption on aluminum hydroxide modified palygorskite nano-composites.
RSC advances, 7(8), 4492-4500.
https://doi.org/10.1039/C6RA26802A.
Rajput, S., Pittman Jr, C. U., & Mohan, D. (2016). Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. Journal of colloid and interface science, 468, 334-346. https://doi.org/10.1016/j.jcis.2015.12.008.
Santhosh, C., Nivetha, R., Kollu, P., Srivastava, V., Sillanpa, M., Grace, A. N., & Bhatnagar, A. (2017). Removal of cationic and anionic heavy metals from water by 1D and 2D-carbon structures decorated with magnetic nanoparticles.
Scientific Reports, 7, 14107. http://doi.
10.1038/s41598-017-14461-2.
Silva Valenzuela, M. G., Hui, W. S., & Valenzuela Diaz, F. R. (2016). FTIR Spectroscopy of some Brazilian clays. In: Ikhmayies, S.J., Li, B., Carpenter, J.S., Hwang, J.-Y., Monteiro, S.N., Li, J., Firrao, D., Zhang, M., Peng, Z., Escobedo-Diaz, J. P., Bai, C. (Eds.), Characterization of Minerals, Metals, and Materials. Springer International Publishing, pp. 227–234. Htpps://doi.10.1007/978-3-319-48210-1-27.
Tarekegn, M. M., Balakrishnan, R. M., Hiruy, A. M., Dekebo, A. H., & Maanyam, H. S. (2022). Nano-Clay and Iron Impregnated Clay Nanocomposite for Cu
2+ and Pb
2+ Ions Removal from Aqueous Solutions.
Air, Soil and Water Research, 2022, 15. http://doi.
10.1177/11786221221094037.
Tran, C. V., Quang, D. V., Nguyen Thi, H. P., Truong, T. N., & La, D. D. (2020). Effective removal of Pb (II) from aqueous media by a new design of Cu–Mg binary ferrite.
ACS Omega, 5, 7298–7306.
https://doi.org/10.1021/acsomega.9b04126.
Uddin, M. K. (2017). A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade.
Chemical Engineering Journal, 308, 438–462
. https://doi.org/10.1016/j.cej.2016.09.029.
Wang, S., Dong, Y., He, M., Chen, L., & Yu, X. (2009). Characterization of GMZ bentonite and its application in the adsorption of Pb (II) from aqueous solutions.
Applied clay science, 43(2), 164-171.
https://doi.org/10.1016/j.clay.2008.07.028.
Xu, D., Tan, X. L., Chen, C. L., & Wang, X. K. (2008). Adsorption of Pb (II) from aqueous solution to MX-80 bentonite: effect of pH, ionic strength, foreign ions and temperature. Applied Clay Science, 41, 37-46. https://doi.org/10.1016/j.clay.2007.09.004.
Yadanaparthi, S. K. R., Graybill, D., & von Wandruszka, R. (2009). Adsorbents for the removal of arsenic, cadmium, and lead from contaminated waters. Journal of hazardous materials, 171(1-3), 1-15. https://doi.org/10.1016/j.jhazmat.2009.05.103.
Yang, S., Zhao, D., Zhang, H., Lu, S., Chen, L., & Yu, X. (2010). Impact of environmental conditions on the sorption behavior of Pb (II) in Na-bentonite suspensions. Journal of hazardous materials, 183, 632-640. https://doi.org/10.1016/j.jhazmat.2010.07.072.
Yuan, P., He, H. P., Bergaya, F., Wu, D. Q., Zhou, Q., & Zhu, J.X. (2006). Synthesis and characterization of delaminated iron-pillared clay with meso-microporous structure.
Microporous and Mesoporous Materials, 88, 8–15. http://doi.
10.1016/j.micromeso.2005.08.022.
Zhang, M., Yin, Q., Ji, X., Wang, F., Gao, X., & Zhao, M., (2020). High and fast adsorption of Cd (II) and Pb(II) ions from aqueous solutions by a waste biomass based hydrogel
. Scientific Reports, 10, 3285.
https://doi.org/10.1038/s41598-020-60160-w.
Zhou, Q., He, H. P., Zhu, J. X., Shen, W., Frost, R. L., & Yuan, P. (2008). Mechanism of p-nitrophenol adsorption from aqueous solution by HDTMA
+-pillared montmorillonite implications for water purification.
Journal of Hazardous Materials, 154, 1025–1032. https://doi.
10.1016/j.jhazmat.2007.11.009.
Zhou, Y., Gao, B., Zimmerman, A. R., Chen, H., Zhang, M., & Cao, X. (2014). Biochar supported zerovalent iron for removal of various contaminants from aqueous solutions.
Bioresource Technology, 152, 538–542.
https://doi.org/10.1016/j. biortech.2013.11.021.
Ziolo, R. F., Giannelis, E. P., Weinstein, B. A., Ohoro, M. P., Ganguly, B. N., Mehrotra, V., Russell, M. W., & Huffman, D. R. (1992). Matrix-mediated synthesis of nanocrystalline gamma-Fe
2O
3—a new optically transparent magnetic material.
Science, 257, 219–223. http://doi.
10.1126/science.257.5067.219.
Zou, C., Jiang, W., Liang, J., Sun, X., & Guan, Y. (2019). Removal of Pb (II) from aqueous solutions by adsorption on magnetic bentonite. Environmental Science and Pollution Research International, 26, 1315-1322. https://doi.org/10.1007/s11356-018-3652-0.