نوع مقاله : مقاله پژوهشی
نویسندگان
1 گروه مهندسی آب، دانشکده مهندسی زارعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران.
2 گروه مهندسی آبیاری و آبادانی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران.
چکیده
کلیدواژهها
موضوعات
عنوان مقاله [English]
نویسندگان [English]
This research was conducted to investigate the effects of using the treated magnetic effluent on chemical properties and heavy metals of soil, water productivity, and uptake of heavy metals by Maize plants. To conduct the research, a factorial experiment was conducted in the form of a randomized complete block design with three replications in two crop seasons (2021 and 2022) in Babolsar City. The treatments included irrigation with well water, irrigation with a mixture of 25% effluent and 75% well water, irrigation with a mixture of 50% effluent and 50% well water, irrigation with a mixture of 75% effluent and 25% well water, and irrigation with 100% effluent in conditions. All these were in the conditions of application of magnetic field and without magnetic field effect. The results showed that the effect of irrigation water and mixing of water and effluent on electrical conductivity, solutes, and heavy metals in the soil at different depths was significant at the probability level of 1%. On average, irrigation with magnetic water decreased electrical conductivity by 33.05%, lead by 37.45%, and cadmium by 65.28%. The results of maize water productivity showed that the effect of irrigation water and water and effluent mixing on biological, physical, wet forage, and dry forage productivity was significant and increased the values of biological, physical, wet forage, and dry forage productivity by 11.51, 10.92, 12.78, and 14.6%, respectively, compared to non-magnetic effluent. By using magnetic water, the concentration of lead, cadmium, zinc, and nickel metals in maize seeds decreased by 19.84%, 19.76%, 15.48%, and 23.01% respectively. The use of magnetic technology enables the optimal use of unusable water and increases the yield and water productivity of plants. Also, this technology can be effective in reducing the accumulation of heavy metals in the soil and maize plants using effluent.
کلیدواژهها [English]
The Effect of Irrigation with Magnetically Effluent on Soil Chemical Properties, Water Productivity and Heavy Metals Uptake by Maize
The crisis of food security and the reduction of access to water and soil resources for agriculture is a serious and big challenge, that their effects are significant on different societies. In this situation, to face the challenge of food security and preserve water and soil resources, it is necessary to plan and manage water and soil resources in the best possible way. The reuse of treated effluent, which is increasing in the country, can reduce the pressure on water resources. However, it should be noted that the effluent usually contains contaminated, chemical, and microbial substances that may be unsuitable for some applications. Magnetic water is one of the methods used to improve the quality of water and soil. In this method, water is influenced by a magnetic field. This process causes changes in the physical and chemical properties of water and can improve water quality.
This research was conducted to investigate the effects of using the treated magnetic effluent on chemical properties and heavy metals of soil, water productivity, and uptake of heavy metals by Maize plants. To conduct the research, a factorial experiment was conducted in the form of a randomized complete block design with three replications in two crop seasons (2021 and 2022) in Babolsar City. The treatments included irrigation with well water, irrigation with a mixture of 25% effluent and 75% well water, irrigation with a mixture of 50% effluent and 50% well water, irrigation with a mixture of 75% effluent and 25% well water, and irrigation with 100% effluent in conditions. All these were in the conditions of application of magnetic field and without magnetic field effect.
The results showed that the effect of irrigation water and mixing of water and effluent on electrical conductivity, solutes, and heavy metals in the soil at different depths was significant at the probability level of 1%. On average, irrigation with magnetic water decreased electrical conductivity by 33.05%, lead by 37.45%, and cadmium by 65.28%. The results of maize water productivity showed that the effect of irrigation water and water and effluent mixing on biological, physical, wet forage, and dry forage productivity was significant and increased the values of biological, physical, wet forage, and dry forage productivity by 11.51, 10.92, 12.78, and 14.6%, respectively, compared to non-magnetic effluent. By using magnetic water, the concentration of lead, cadmium, zinc, and nickel metals in maize seeds decreased by 19.84%, 19.76%, 15.48%, and 23.01% respectively.
The use of magnetic technology enables the optimal use of unusable water and increases the yield and water productivity of plants. Also, this technology can be effective in reducing the accumulation of heavy metals in the soil and maize plants using effluent.