تأثیر آبیاری با پساب مغناطیسی بر خصوصیات شیمیایی خاک، بهره‌وری آب و جذب فلزات سنگین ذرت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی آب، دانشکده مهندسی زارعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران.

2 گروه مهندسی آبیاری و آبادانی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران.

چکیده

این پژوهش به منظور بررسی اثرات استفاده از پساب تصفیه‌شده مغناطیسی بر خصوصیات شیمیایی و فلزات سنگین خاک و بهره‌وری آب و جذب فلزات سنگین گیاه ذرت انجام شده است. برای انجام پژوهش، آزمایشی به‌صورت فاکتوریل در قالب طرح بلوک کامل تصادفی با سه تکرار در دو فصل کشت (سال‌های 1400 و 1401) در شهرستان بابلسر انجام شده است. تیمارها شامل آبیاری با آب چاه، آبیاری با اختلاط 25 درصد پساب و 75 درصد آب چاه، آبیاری با اختلاط 50 درصد پساب و 50 درصد آب چاه، آبیاری با اختلاط 75 درصد پساب و 25 درصد آب چاه و آبیاری با 100 درصد پساب در شرایط اعمال میدان مغناطیسی و بدون میدان مغناطیسی بود. نتایج نشان داد که اثر آب آبیاری و اختلاط آب و پساب بر هدایت الکتریکی، املاح و فلزات سنگین خاک در عمق‌های مختلف در سطح احتمال یک درصد معنی‌دار شد. به طور متوسط، آبیاری با آب مغناطیسی باعث کاهش 05/33 درصدی هدایت الکتریکی، کاهش 45/37 درصدی سرب و کاهش 28/65 درصدی مقدار کادمیوم خاک شد. نتایج بهره‌وری آب ذرت نشان داد که اثر آب آبیاری و اختلاط آب و پساب بر بهره‌وری‌های بیولوژیکی، فیزیکی، علوفه تر و علوفه خشک معنی‌دار شد و مقادیر بهره‌وری‌های بیولوژیکی و فیزیکی، علوفه تر و خشک را به‌ترتیب 51/11، 92/10، 78/12 و 6/14 درصد نسبت به پساب غیرمغناطیسی افزایش داد. همچنین با استفاده از آب مغناطیسی غلظت فلزات سرب، کادمیوم، روی و نیکل در دانه گیاه ذرت به‌ترتیب 84/19، 76/19، 48/15 و 01/23 درصد کاهش یافت. استفاده از فناوری مغناطیسی، امکان بهره‌برداری بهینه از آب‌های غیرقابل استفاده را فراهم می‌کند و باعث افزایش عملکرد و بهره‌وری گیاهان می‌شود. همچنین، این فناوری می‌تواند در کاهش تجمع فلزات سنگین در خاک و گیاه ذرت با استفاده از پساب‌ها مؤثر باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Irrigation with Magnetically Effluent on Soil Chemical Properties, Water Productivity and Heavy Metals Uptake by Maize

نویسندگان [English]

  • Mojtaba Khoshravesh 1
  • Masoud Pourgholam-Amiji 2
1 Department of Water Engineering, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
2 Department of Irrigation and Reclamation Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
چکیده [English]

This research was conducted to investigate the effects of using the treated magnetic effluent on chemical properties and heavy metals of soil, water productivity, and uptake of heavy metals by Maize plants. To conduct the research, a factorial experiment was conducted in the form of a randomized complete block design with three replications in two crop seasons (2021 and 2022) in Babolsar City. The treatments included irrigation with well water, irrigation with a mixture of 25% effluent and 75% well water, irrigation with a mixture of 50% effluent and 50% well water, irrigation with a mixture of 75% effluent and 25% well water, and irrigation with 100% effluent in conditions. All these were in the conditions of application of magnetic field and without magnetic field effect. The results showed that the effect of irrigation water and mixing of water and effluent on electrical conductivity, solutes, and heavy metals in the soil at different depths was significant at the probability level of 1%. On average, irrigation with magnetic water decreased electrical conductivity by 33.05%, lead by 37.45%, and cadmium by 65.28%. The results of maize water productivity showed that the effect of irrigation water and water and effluent mixing on biological, physical, wet forage, and dry forage productivity was significant and increased the values of biological, physical, wet forage, and dry forage productivity by 11.51, 10.92, 12.78, and 14.6%, respectively, compared to non-magnetic effluent. By using magnetic water, the concentration of lead, cadmium, zinc, and nickel metals in maize seeds decreased by 19.84%, 19.76%, 15.48%, and 23.01% respectively. The use of magnetic technology enables the optimal use of unusable water and increases the yield and water productivity of plants. Also, this technology can be effective in reducing the accumulation of heavy metals in the soil and maize plants using effluent.

کلیدواژه‌ها [English]

  • Food Security
  • Improving Water Quality
  • Magnetic Technology
  • Mixing of Water and Effluent
  • Water Resources

The Effect of Irrigation with Magnetically Effluent on Soil Chemical Properties, Water Productivity and Heavy Metals Uptake by Maize

 

EXTENDED ABSTRACT

 

Introduction:

The crisis of food security and the reduction of access to water and soil resources for agriculture is a serious and big challenge, that their effects are significant on different societies.  In this situation, to face the challenge of food security and preserve water and soil resources, it is necessary to plan and manage water and soil resources in the best possible way. The reuse of treated effluent, which is increasing in the country, can reduce the pressure on water resources. However, it should be noted that the effluent usually contains contaminated, chemical, and microbial substances that may be unsuitable for some applications. Magnetic water is one of the methods used to improve the quality of water and soil. In this method, water is influenced by a magnetic field. This process causes changes in the physical and chemical properties of water and can improve water quality.

 

Materials and Methods:

This research was conducted to investigate the effects of using the treated magnetic effluent on chemical properties and heavy metals of soil, water productivity, and uptake of heavy metals by Maize plants. To conduct the research, a factorial experiment was conducted in the form of a randomized complete block design with three replications in two crop seasons (2021 and 2022) in Babolsar City. The treatments included irrigation with well water, irrigation with a mixture of 25% effluent and 75% well water, irrigation with a mixture of 50% effluent and 50% well water, irrigation with a mixture of 75% effluent and 25% well water, and irrigation with 100% effluent in conditions. All these were in the conditions of application of magnetic field and without magnetic field effect.

 

Results and Discussion:

The results showed that the effect of irrigation water and mixing of water and effluent on electrical conductivity, solutes, and heavy metals in the soil at different depths was significant at the probability level of 1%. On average, irrigation with magnetic water decreased electrical conductivity by 33.05%, lead by 37.45%, and cadmium by 65.28%. The results of maize water productivity showed that the effect of irrigation water and water and effluent mixing on biological, physical, wet forage, and dry forage productivity was significant and increased the values of biological, physical, wet forage, and dry forage productivity by 11.51, 10.92, 12.78, and 14.6%, respectively, compared to non-magnetic effluent. By using magnetic water, the concentration of lead, cadmium, zinc, and nickel metals in maize seeds decreased by 19.84%, 19.76%, 15.48%, and 23.01% respectively.

 

Conclusion:

The use of magnetic technology enables the optimal use of unusable water and increases the yield and water productivity of plants. Also, this technology can be effective in reducing the accumulation of heavy metals in the soil and maize plants using effluent.

Abedi-Koupai, J., Afyuni, M., Mostafazadeh, B., & Bagheri, M. R. (2001, September). Influence of treated wastewater and irrigation systems on soil physical properties in Isfahan province. In ICID International workshop on waste water reuse management. Sep (pp. 19-20).
Abedi-Koupai, J., Khoshravesh, M., & Zanganeh, M. E. (2013). Distribution of moisture and salinity under deficit irrigation and irrigation water salinity in an alternative trickle irrigation system of tape. Water Science and Technology: Water Supply, 13(2), 394-402.
Alizadeh, A. (2010). Drip irrigation (principles and operations). Emam Reza Press. 494 pp.
Alloway, B. J. (1990). Heavy Metals in Soils. John Wiley and Sons Inc., New York, PP. 20-27.
Bull, F. C., Al-Ansari, S. S., Biddle, S., Borodulin, K., Buman, M. P., Cardon, G. ... & Willumsen, J. F. (2020). World Health Organization 2020 guidelines on physical activity and sedentary behaviour. British journal of sports medicine, 54(24), 1451-1462.
Celik, Ö., Atak, Ç., & Rzakulieva, A. (2008). Stimulation of rapid regeneration by a magnetic field in Paulownia node cultures. Journal of Central European Agriculture, 9(2), 297-304.
Devkota, B., & Schmidt, G. H. (2000). Accumulation of heavy metals in food plants and grasshoppers from the Taigetos Mountains, Greece. Agriculture, ecosystems & environment, 78(1), 85-91.
El Sayed, H. E. S. A. (2014). Impact of magnetic water irrigation for improve the growth, chemical composition and yield production of broad bean (Vicia faba L.) plant. American journal of experimental agriculture, 4(4), 476.
Hamza, A. H., Shreif, M., El-Azeim, A., Mohamad, M., & Mohamed, W. A. (2021). Impacts of Magnetic Field Treatment on Water Quality for Irrigation, Soil Properties and Maize Yield. Journal of Modern Research, 3(1), 51-61.
Helmy, A. M., Niel, E. M., Shaban, K. A., & Ramadan, M. F. (2023). Magnetic Treatment of Irrigation Water and Seeds and Its Effect on the Productivity and Quality of Wheat (Triticum aestivium L.) Grown in Saline Soil. Communications in Soil Science and Plant Analysis, 1-18.
Kabata-Pendias, A., & Pendias, H. (2001). Trace Elements in Soils and Plants. Third Ed., CRC Press, Boca Raton, Florida, 413 p.
Khoshravesh, M., & Pourgholam-Amiji, M. (2023). Effect of Water Stress on Strawberry Yield and Yield Components using Magnetized Water. Journal of Water Research in Agriculture, 36(4), 441-453.
Khoshravesh, M., Erfanian, F., & Pourgholam-Amiji, M. (2021a). The Effect of Irrigation with Treated Magnetic Effluent on Yield and Yield Components of Maize. Water Management in Agriculture, 8(1), 115-128.
Khoshravesh, M., Hosseini, S. M., & Pourgholam-Amiji, M. (2021b). The Effect of Irrigation with Magnetically Treated Effluent on Chemical Properties and Soil Heavy Metals. Iranian Journal of Soil and Water Research, 52(8), 2191-2203.
Khoshravesh, M., Mirzaei, S. M. J., Shirazi, P., & Norooz Valashedi, R. (2018). Evaluation of dripper clogging using magnetic water in drip irrigation. Applied Water Science, 8(3), 1-8.
Khoshravesh, M., Pourgholam-Amiji, M., & Emami Ghara, F. (2023). The Effect of Magnetized Saline Water on Yield and Yield Components of Strawberry (Fragaria ananassa cv. Silva). Water and Soil, 37(2), 203-217.
Latosińska, J., Kowalik, R., & Gawdzik, J. (2021). Risk assessment of soil contamination with heavy metals from municipal sewage sludge. Applied Sciences, 11(2), 548.
Millaleo, R., Reyes-Díaz, M., Ivanov, A. G., Mora, M. L., & Alberdi, M. (2010). Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms. Journal of soil science and plant nutrition, 10(4), 470-481.
Mohamed, A. I. (2013). Effects of magnetized low quality water on some soil properties and plant growth. International Journal of Research in Chemistry and Environment, 3(2), 140-147.
Mojiri, A., & Aziz, H. A. (2011). Effects of municipal wastewater on accumulation of heavy metals in soil and wheat (Triticum aestivum L.) with two irrigation methods. Romanian Agricultural Research, 28, 217-222.
Mostafazadeh-Fard, B., Khoshravesh, M., Mousavi, S. F., & Kiani, A. R. (2012). Effects of magnetized water on soil chemical components underneath trickle irrigation. Journal of irrigation and drainage engineering, 138(12), 1075-1081.
Mostafazadeh-Fard, B., Khoshravesh, M., Mousavi, S. F., & Kiani, A. R. (2011). Effects of magnetized water on soil sulphate ions in trickle irrigation. In 2nd International conference on environmental engineering and applications. IACSIT Press, Singapore (Vol. 17).
Park, J., Kim, J. Y., & Kim, K. W. (2012). Phytoremediation of soil contaminated with heavy metals using Brassica napus. Geosystem Engineering, 15(1), 10-18.
Pourgholam-Amiji, M., & Khoshravesh, M. (2022). The Effect of Irrigation with Magnetically Treated Effluent on Uptake of Some Heavy Metals in Maize Cultivation. Iranian Journal of Soil and Water Research, 53(5), 1079-1091.
Pourgholam-Amiji, M., Khoshravesh, M., Divband Hafshejani, L., & Ghadami Firouzabadi, A. (2022). The Effect of Irrigation with Treated Magnetic Effluent on Water Productivity of Maize. Iranian Journal of Irrigation & Drainage, 16(1), 243-253.
Pourgholam-Amiji, M., Khoshravesh, M., Waqas, M. M., & Mirzaei, S. M. J. (2020). Study of Combined Magnetized Water and Salinity on Soil Permeability in North of Iran. Big Data in Agriculture (BDA), 2(2), 69-73.
Pourgholam-Amiji, M., Liaghat, A., Khoshravesh, M., & Azamathulla, H. M. (2021). Improving rice water productivity using alternative irrigation (case study: north of Iran). Water Supply, 21(3), 1216-1227.
Pruvot, C., Douay, F., Hervé, F., & Waterlot, C. (2006). Heavy metals in soil, crops and grass as a source of human exposure in the former mining areas (6 pp). Journal of soils and sediments, 6(4), 215-220.
Rattan, R. K., Datta, S. P., Chhonkar, P. K., Suribabu, K., & Singh, A. K. (2005). Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater—a case study. Agriculture, ecosystems & environment, 109(3-4), 310-322.
Rezapour, S., Atashpaz, B., Moghaddam, S. S., & Damalas, C. A. (2019). Heavy metal bioavailability and accumulation in winter wheat (Triticum aestivum L.) irrigated with treated wastewater in calcareous soils. Science of the Total Environment, 656, 261-269.
Rosensweig, R. E. (2002). Heating magnetic fluid with alternating magnetic field. Journal of magnetism and magnetic materials, 252, 370-374.
Saliha, B. B. (2005). Bioefficacy testing of GMX online magnetic water conditioner in grapes var. muscat. Tamil Nadu agricultural university. Project Completion Project.
Sergey, G., & Svetlana, S. (2002). Heavy metals as contaminants of agricultural lands of Belarus. In 17. World congress of soil science, Bangkok (Thailand), 14-21 Aug 2002.
Tavassoli, A., Ghanbari, A., Amiri, E., & Paygozar, Y. (2010). Effect of municipal wastewater with manure and fertilizer on yield and quality characteristics of forage in corn. African Journal of Biotechnology, 9(17), 2515-2520.
Wei, Z., Paredes, P., Liu, Y., Chi, W. W., & Pereira, L. S. (2015). Modelling transpiration, soil evaporation and yield prediction of soybean in North China Plain. Agricultural Water Management, 147, 43-53.
Yusuf, M., Fariduddin, Q., Hayat, S., & Ahmad, A. (2011). Nickel: an overview of uptake, essentiality and toxicity in plants. Bulletin of Environmental Contamination and Toxicology, 86(1), 1-17.
Zafarzadeh, A., Taghani, J. M., Toomaj, M. A., Ramavandi, B., Bonyadi, Z., & Sillanpää, M. (2021). Assessment of the health risk and geo-accumulation of toxic metals in agricultural soil and wheat, northern Iran. Environmental monitoring and assessment, 193(11), 1-10.