تولید نقشه‌های دمای سطح زمین با قدرت تفکیک مکانی بالا از داده‌های ماهواره Sentinel-2، )مطالعه موردی: اصفهان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی آب، دانشکده مهندسی عمران و محیط زیست، دانشگاه تربیت مدرس، تهران ، ایران

2 گروه مهندسی آب، دانشکده مهندسی عمران و محیط زیست، دانشگاه تربیت مدرس، تهران، ایران

3 گروه مهندسی آب، دانشکده مهندسی عمران و محیط زیست، دانشگاه تربیت مدرس، تهران، ایران.

4 موسسه تحقیقات آب، وزارت نیرو ، تهران، ایران.

چکیده

پایش دمای سطح زمین با استفاده از فن‌آوری سنجش از دور و بررسی تغییرات زمانی و مکانی آن در مطالعات مختلفی نظیر تغییرات کاربری اراضی، کشاورزی و تشخیص خشکسالی به ویژه در مقیاس محلی اهمیت دارد. با این وجود در حال حاضر محصولات دمای سطح که از قدرت تفکیک مکانی و زمانی بالا برخوردار باشند در دسترس نیست. از این رو، استفاده از مدل‌های ریزمقیاس سازی به منظور تولید نقشه دمای سطح با قدرت تفکیک مکانی بالا از سنجنده‌های با قدرت تفکیک زمانی مناسب مورد توجه قرار گرفته‌ است.
 در این مطالعه، با استفاده از مدل PyDMS  و تصاویر سنتینل 2، ریزمقیاس نمایی دمای سطح زمین حاصل از تصاویر ماهواره‌ای سنتینل 3 انجام و نقشه دمای سطح زمین با قدرت تفکیک مکانی 20 متر در شهر اصفهان تولید و نتایج‌ حاصل از این مدل با داده‌های اندازه‌گیری زمینی دمای سطح در عمق 5 سانتی‌متری ایستگاه‌های هواشناسی صحت‌سنجی شد. نتایج نشانگر ضریب همبستگی بالاتر از 74/0 در هر 3 ایستگاه و خطای RMSE معادل 7/6، 0/4  و 5/15 درجه سلسیوس به ترتیب در سه ایستگاه اصفهان‌، کبوترآباد و فرودگاه به ترتیب معادل  می باشد. همچنین االگوی مکانی دمای سطح حاصل از این مدل با الگوی مکانی محصولات دمای سطح لندست 8، سنتینل 3 و مادیس تطبیق دارد. یافته‌های این پژوهش حاکی از امکان تولید نقشه‌های دمای سطح زمین با قدرت تفکیک مکانی 20متر و گام زمانی کمتر از هفته‌ای با استفاه از الگوریتم PyDMS و اعمال تصحیح اریبی با داده‌های زمینی است. تولید نقشه‌های دمای سطح با قدرت تفکیک مکانی و زمانی بالا برای بسیاری از کاربردها نظیر مدیریت خاک و محصول، برآورد تبخیرتعرق و مدیریت آب آبیاری مفید است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Producing High-resolution Land Surface Temperature Maps Using Sentinel-2 Satellite Data in Isfahan

نویسندگان [English]

  • mohammad hosein taghikhani 1
  • somayeh sima 2
  • iman raissi dehkordi 3
  • neamat karimi 4
1 Department of Water Engineering, Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Tehran. iran.
2 Department of Water Engineering, Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Tehran.
3 Department of Water Engineering, Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Tehran.
4 , water research institute, ministry of energy, tehran, iran.
چکیده [English]

 
Monitoring land surface temperature (LST) using remote sensing data and examining its temporal and spatial variation is important in various studies such as environmental research, land use change, water resources management, and drought monitoring, especially at local scales. Remote sensing data can provide a long-term and continuous spatial coverage of LST. However, LST data retrieved from thermal infrared (TIR) band imagery have a coarser spatial resolution than surface reflectance (SR) data collected from shortwave bands on the same instrument. LST products with high spatial and temporal resolutions are not yet available. Therefore, several downscaling algorithms to produce high-resolution LST maps from sensors with appropriate temporal resolution have been developed recently. In this study, thermal sharpening of land surface temperature obtained from Sentinel-3 satellite images with a spatial resolution of 1 km and temporal resolution of less than 1 day was carried out using the PyDMS model and Sentinel-2 images to produce LST maps with a spatial resolution of 20 meters for Isfahan, Iran. PyDMS is a machine learning algorithm based on decision tree regression that relates the reflectance of high-resolution bands to the LST of the corresponding low-resolution image. The results of this model have been compared against the LST measurements at a depth of 5 cm in three meteorological stations including Isfahan Airport, Isfahan, and Kaboutarbad. Moreover, LST products of MODIS and Landsat-8 have been used to assess the consistency of the sharpened LSTs. The results show that the correlation coefficient is higher than 0.74 in all 3 stations and the RMSE error is equal to 6.7, 4.0 and 15.5 °C in Isfahan, Kabutrabad and the airport, respectively. Moreover, the spatial pattern of the sharpened LST is compatible with the spatial pattern of the LST products of Landsat 8, Sentinel 3 and MODIS. The findings of this study indicate the promising application of the PyDMS algorithm for producing LST maps with a spatial resolution of 20 meters and temporal resolution of fewer than 7 days, though bias correction using in situ LST can improve results. Production of LST maps with both high spatial and temporal resolutions is extremely useful for many practical applications such as soil and crop management practices, evapotranspiration estimation, and irrigation water management.

کلیدواژه‌ها [English]

  • Satellite-derived Land surface temperature
  • Sharpening
  • Thermal remote sensing
Agam, N., Kustas, W. P., Anderson, M. C., Li, F., & Neale, C. M. U. (2007). A vegetation index based technique for spatial sharpening of thermal imagery. Remote Sensing of Environment, 107(4), 545–558. https://doi.org/10.1016/j.rse.2006.10.006
Akbari, D., & Moradizadeh, Mina. (2017). Enhancement of Spatial Resolution of Thermal Bands Using Vegetation and Impervious Surface Indices. Iranina Remote Sensing & GIS. Vol. 9, No. 3. 33-44.(In Persian)
Anderson, M. C., Norman, J. M., Kustas, W. P., Houborg, R., Starks, P. J., & Agam, N. (2008). A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales. Remote Sensing of Environment, 112(12), 4227–4241. https://doi.org/10.1016/j.rse.2008.07.009
Ataei, H., & Hasheminasab, S. (2015). Evaluation and zoning of air pollution in Isfahan using ArcGIS software. 1st National Conference on Environmental Science, Payam Noor University, Isfahan, Iran.
Drusch, M., del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., & Bargellini, P. (2012). Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sensing of Environment, 120, 25–36. https://doi.org/10.1016/j.rse.2011.11.026
Duan, S. B., Li, Z. L., Li, H., Göttsche, F. M., Wu, H., Zhao, W., Leng, P., Zhang, X., & Coll, C. (2019). Validation of Collection 6 MODIS land surface temperature product using in situ measurements. Remote Sensing of Environment, 225, 16–29. https://doi.org/10.1016/j.rse.2019.02.020
Ermida, S. L., Soares, P., Mantas, V., Göttsche, F. M., & Trigo, I. F. (2020). Google earth engine open-source code for land surface temperature estimation from the landsat series. Remote Sensing, 12(9). https://doi.org/10.3390/RS12091471
Faraj, Z., Kaviani, A., & Daneshkar Arasteh, P. Evaluation of DisTRAD and TsHARP Sharpening methods in order to increase the spatial resolution of MODIS thermal images. (2021). Journal of water and soil resources protection. 11(2). 133-147.(In Persian)
Gao, F., Kustas, W. P., & Anderson, M. C. (2012). A data mining approach for sharpening thermal satellite imagery over land. Remote Sensing, 4(11), 3287–3319. https://doi.org/10.3390/rs4113287
Guzinski, R., & Nieto, H. (2019a). Evaluating the feasibility of using Sentinel-2 and Sentinel-3 satellites for high-resolution evapotranspiration estimations. Remote Sensing of Environment, 221, 157–172. https://doi.org/10.1016/j.rse.2018.11.019
Guzinski, R., & Nieto, H. (2019b). Evaluating the feasibility of using Sentinel-2 and Sentinel-3 satellites for high-resolution evapotranspiration estimations. Remote Sensing of Environment, 221, 157–172. https://doi.org/10.1016/j.rse.2018.11.019
Guzinski, R., Nieto, H., Sandholt, I., & Karamitilios, G. (2020). Modelling high-resolution actual evapotranspiration through Sentinel-2 and Sentinel-3 data fusion. Remote Sensing, 12(9). https://doi.org/10.3390/RS12091433
Harris, S., Veraverbeke, S., & Hook, S. (2011). Evaluating spectral indices for assessing fire severity in chaparral ecosystems (Southern California) using modis/aster (MASTER) airborne simulator data. Remote Sensing, 3(11), 2403–2419. https://doi.org/10.3390/rs3112403
Huang, R., Huang, J., Zhang, Ch., & Ma, H., Zhuo, W.,Chen, Y., & Zhu, D., Wu, Q., Mansaray, L. (2020). Soil temperature estimation at different depths, using remotely-sensed data. Journal of Integrative Agriculture. 19. 277-290. 10.1016/S2095-3119(19)62657-2.
Huryna, H., Cohen, Y., Karnieli, A., Panov, N., Kustas, W. P., & Agam, N. (2019). Evaluation of TsHARP utility for thermal sharpening of Sentinel-3 satellite images using Sentinel-2 visual imagery. Remote Sensing, 11(19). https://doi.org/10.3390/rs11192304
Jeganathan, C., Hamm, N. A. S., Mukherjee, S., Atkinson, P. M., Raju, P. L. N., & Dadhwal, V. K. (2011). Evaluating a thermal image sharpening model over a mixed agricultural landscape in India. International Journal of Applied Earth Observation and Geoinformation, 13(2), 178–191. https://doi.org/10.1016/j.jag.2010.11.001
Khodaghli, M. (2008). The final report of drought zoning in Isfahan Province. The Center of agricultural research and natural resources of Isfahan Province.(In Persian)
Malakar, N. K., Hulley, G. C., Hook, S. J., Laraby, K., Cook, M., & Schott, J. R. (2018). An Operational Land Surface Temperature Product for Landsat Thermal Data: Methodology and Validation. IEEE Transactions on Geoscience and Remote Sensing, 56(10), 5717–5735. https://doi.org/10.1109/TGRS.2018.2824828
Pahlevanzadeh, N., Janalipour, M., abbaszadeh teharni, N., and farhanj, F. (2019). Accuracy Improvement of Land Surface Temperature Extracted from Thermal Bands of Landsat Satellite using Linear Regression and Ground Observations. Geography and Environmental Planning, 30(3), 59-78. 10.22108/gep.2019.118336.1179.(In Persian)
Slayer, K. (2022). Landsat 8-9 Collection 2 (C2) Level 2 Science Product (L2SP) Guide. Department of the Interior U.S. Geological Survey.
Song C Y, Jia L, Menenti M. 2014. Retrieving high-resolution surface soil moisture by  downscaling AMSR-E brightness temperature using MODIS LST and NDVI data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 935–942.
Tran, D. X., Pla, F., Latorre-Carmona, P., Myint, S. W., Caetano, M., & Kieu, H. v. (2017). Characterizing the relationship between land use land cover change and land surface temperature. ISPRS Journal of Photogrammetry and Remote Sensing, 124, 119–132. https://doi.org/10.1016/j.isprsjprs.2017.01.001
Tan X, Luo S, Li H, Hao X, Wang J, Dong Q, Chen Z. Investigating the Effects of Snow Cover and Vegetation on Soil Temperature Using Remote Sensing Indicators in the Three River Source Region, China. Remote Sensing. 2022; 14(16):4114. https://doi.org/10.3390/rs14164114
Voogt, J. A., & Oke, T. R. (2003). Thermal remote sensing of urban climates. Remote Sensing of Environment, 86(3), 370–384. https://doi.org/10.1016/S0034-4257(03)00079-8
Wang, J. W., Chow, W. T. L., & Wang, Y. C. (2020). A global regression method for thermal sharpening of urban land surface temperatures from MODIS and Landsat. International Journal of Remote Sensing, 41(8), 2986–3009. https://doi.org/10.1080/01431161.2019.1697009
Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 89(4), 467–483. https://doi.org/10.1016/j.rse.2003.11.005
Zhanga, Y., Odeh, I. O. A., & Ramadan, E. (2013). Assessment of land surface temperature in relation to landscape metrics and fractional vegetation cover in an urban/peri-urban region using landsat data. International Journal of Remote Sensing, 34(1), 168–189. https://doi.org/10.1080/01431161.2012.712227