Agam, N., Kustas, W. P., Anderson, M. C., Li, F., & Neale, C. M. U. (2007). A vegetation index based technique for spatial sharpening of thermal imagery.
Remote Sensing of Environment, 107(4), 545–558. https://doi.org/10.1016/j.rse.2006.10.006
Akbari, D., & Moradizadeh, Mina. (2017). Enhancement of Spatial Resolution of Thermal Bands Using Vegetation and Impervious Surface Indices. Iranina Remote Sensing & GIS. Vol. 9, No. 3. 33-44.(In Persian)
Anderson, M. C., Norman, J. M., Kustas, W. P., Houborg, R., Starks, P. J., & Agam, N. (2008). A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales.
Remote Sensing of Environment, 112(12), 4227–4241. https://doi.org/10.1016/j.rse.2008.07.009
Ataei, H., & Hasheminasab, S. (2015). Evaluation and zoning of air pollution in Isfahan using ArcGIS software. 1st National Conference on Environmental Science, Payam Noor University, Isfahan, Iran.
Drusch, M., del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., & Bargellini, P. (2012). Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services.
Remote Sensing of Environment, 120, 25–36. https://doi.org/10.1016/j.rse.2011.11.026
Duan, S. B., Li, Z. L., Li, H., Göttsche, F. M., Wu, H., Zhao, W., Leng, P., Zhang, X., & Coll, C. (2019). Validation of Collection 6 MODIS land surface temperature product using in situ measurements.
Remote Sensing of Environment, 225, 16–29. https://doi.org/10.1016/j.rse.2019.02.020
Ermida, S. L., Soares, P., Mantas, V., Göttsche, F. M., & Trigo, I. F. (2020). Google earth engine open-source code for land surface temperature estimation from the landsat series.
Remote Sensing, 12(9). https://doi.org/10.3390/RS12091471
Faraj, Z., Kaviani, A., & Daneshkar Arasteh, P. Evaluation of DisTRAD and TsHARP Sharpening methods in order to increase the spatial resolution of MODIS thermal images. (2021). Journal of water and soil resources protection. 11(2). 133-147.(In Persian)
Gao, F., Kustas, W. P., & Anderson, M. C. (2012). A data mining approach for sharpening thermal satellite imagery over land
. Remote Sensing, 4(11), 3287–3319.
https://doi.org/10.3390/rs4113287
Guzinski, R., & Nieto, H. (2019a). Evaluating the feasibility of using Sentinel-2 and Sentinel-3 satellites for high-resolution evapotranspiration estimations.
Remote Sensing of Environment, 221, 157–172.
https://doi.org/10.1016/j.rse.2018.11.019
Guzinski, R., & Nieto, H. (2019b). Evaluating the feasibility of using Sentinel-2 and Sentinel-3 satellites for high-resolution evapotranspiration estimations.
Remote Sensing of Environment, 221, 157–172. https://doi.org/10.1016/j.rse.2018.11.019
Guzinski, R., Nieto, H., Sandholt, I., & Karamitilios, G. (2020). Modelling high-resolution actual evapotranspiration through Sentinel-2 and Sentinel-3 data fusion.
Remote Sensing, 12(9). https://doi.org/10.3390/RS12091433
Harris, S., Veraverbeke, S., & Hook, S. (2011). Evaluating spectral indices for assessing fire severity in chaparral ecosystems (Southern California) using modis/aster (MASTER) airborne simulator data.
Remote Sensing, 3(11), 2403–2419.
https://doi.org/10.3390/rs3112403
Huang, R., Huang, J., Zhang, Ch., & Ma, H., Zhuo, W.,Chen, Y., & Zhu, D., Wu, Q., Mansaray, L. (2020). Soil temperature estimation at different depths, using remotely-sensed data. Journal of Integrative Agriculture. 19. 277-290. 10.1016/S2095-3119(19)62657-2.
Huryna, H., Cohen, Y., Karnieli, A., Panov, N., Kustas, W. P., & Agam, N. (2019). Evaluation of TsHARP utility for thermal sharpening of Sentinel-3 satellite images using Sentinel-2 visual imagery.
Remote Sensing, 11(19). https://doi.org/10.3390/rs11192304
Jeganathan, C., Hamm, N. A. S., Mukherjee, S., Atkinson, P. M., Raju, P. L. N., & Dadhwal, V. K. (2011). Evaluating a thermal image sharpening model over a mixed agricultural landscape in India.
International Journal of Applied Earth Observation and Geoinformation, 13(2), 178–191. https://doi.org/10.1016/j.jag.2010.11.001
Khodaghli, M. (2008). The final report of drought zoning in Isfahan Province. The Center of agricultural research and natural resources of Isfahan Province.(In Persian)
Malakar, N. K., Hulley, G. C., Hook, S. J., Laraby, K., Cook, M., & Schott, J. R. (2018). An Operational Land Surface Temperature Product for Landsat Thermal Data: Methodology and Validation.
IEEE Transactions on Geoscience and Remote Sensing, 56(10), 5717–5735. https://doi.org/10.1109/TGRS.2018.2824828
Pahlevanzadeh, N., Janalipour, M., abbaszadeh teharni, N., and farhanj, F. (2019). Accuracy Improvement of Land Surface Temperature Extracted from Thermal Bands of Landsat Satellite using Linear Regression and Ground Observations. Geography and Environmental Planning, 30(3), 59-78. 10.22108/gep.2019.118336.1179.(In Persian)
Slayer, K. (2022). Landsat 8-9 Collection 2 (C2) Level 2 Science Product (L2SP) Guide. Department of the Interior U.S. Geological Survey.
Song C Y, Jia L, Menenti M. 2014. Retrieving high-resolution surface soil moisture by downscaling AMSR-E brightness temperature using MODIS LST and NDVI data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 935–942.
Tran, D. X., Pla, F., Latorre-Carmona, P., Myint, S. W., Caetano, M., & Kieu, H. v. (2017). Characterizing the relationship between land use land cover change and land surface temperature.
ISPRS Journal of Photogrammetry and Remote Sensing, 124, 119–132. https://doi.org/10.1016/j.isprsjprs.2017.01.001
Tan X, Luo S, Li H, Hao X, Wang J, Dong Q, Chen Z. Investigating the Effects of Snow Cover and Vegetation on Soil Temperature Using Remote Sensing Indicators in the Three River Source Region, China.
Remote Sensing.
2022; 14(16):4114.
https://doi.org/10.3390/rs14164114
Wang, J. W., Chow, W. T. L., & Wang, Y. C. (2020). A global regression method for thermal sharpening of urban land surface temperatures from MODIS and Landsat.
International Journal of Remote Sensing, 41(8), 2986–3009. https://doi.org/10.1080/01431161.2019.1697009
Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies.
Remote Sensing of Environment, 89(4), 467–483. https://doi.org/10.1016/j.rse.2003.11.005
Zhanga, Y., Odeh, I. O. A., & Ramadan, E. (2013). Assessment of land surface temperature in relation to landscape metrics and fractional vegetation cover in an urban/peri-urban region using landsat data.
International Journal of Remote Sensing, 34(1), 168–189. https://doi.org/10.1080/01431161.2012.712227