ارزیابی سناریوهای کاهش مصرف آب در سطح مزرعه با استفاده از مدل‌سازی عملکرد محصول (مطالعه موردی دشت میاندوآب)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی آب، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

2 گروه مهندسی آب، دانشکده کشاورزی و گروه پژوهشی محیط زیست، پژوهشکده مطالعات دریاچه ارومیه، دانشگاه ارومیه، ارومیه، ایران.

3 گروه مهندسی آب، دانشکده کشاورزی دانشگاه ارومیه، ارومیه، ایران.

4 بخش تحقیقات فنی و مهندسی کشاورزی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان آذربایجان غربی، سازمان تحقیقات، آموزش و ترویج

چکیده

صرفه‌‌جویی، بهینه‌‌سازی مصرف آب، ارتقای شاخص‌‌های بهره‌‌وری و راندمان‌ها در بخش کشاورزی امری مهم و ضروری است. منطقه میاندوآب به-عنوان الگوی کاهش مصرف جهت حفظ آب واقعی برای احیاء دریاچه ارومیه از اهمیت خاصی برخوردار است. این تحقیق با هدف ارزیابی سناریوهای کاهش مصرف آب در سطح مزرعه با مدل گیاهی AquaCrop در منطقه میاندوآب انجام گرفت. برای این منظور از اطلاعات مزارع مربوط به پروژه کشاورزی پایدار طرح حفاظت از تالاب‌‌های ایران در منطقه میاندوآب استفاده شد. اطلاعات سال اول (سال زراعی 96-1395) برای واسنجی مدل و سال دوم (سال زراعی 97-1396) برای صحت‌‌سنجی مدل به‌کارگرفته شد. ارزیابی شاخص‌‌های آماری نشان از دقت و توانایی بالای مدل در شبیه‌‌سازی عملکرد دانه دارد. پس از واسنجی و صحت‌‌سنجی مدل، سناریوهای برنامه‌‌ریزی آبیاری در قالب تغییر عمق آبیاری به میزان 10، 20 و 30 درصد کاهش برای شرایط سال دوم مورد تحلیل و ارزیابی قرار گرفت. مقادیر شاخص‌‌های بهره‌‌وری آب با استفاده از اجزای بیلان و عملکرد شبیه‌سازی‌شده توسط مدل برای هر یک از مزارع محاسبه گردید. نتایج اندازه‌‌گیری‌‌های مزرعه در سال 97-96 نشان داد که در شرایط موجود متوسط میزان آب آبیاری و آب کاربردی برای گندم به ترتیب 4/405 و 4/580 میلی‌‌متر، متوسط عملکرد دانه 8340 کیلوگرم در هکتار، بهره‌‌وری آب آبیاری و آب کاربردی به ترتیب 27/2 و 52/1 کیلوگرم بر مترمکعب است. همچنین نتایج حاصل از بررسی سناریوهای کم آبیاری نشان داد سناریوی S3  ضمن کاهش 30 درصدی آب آبیاری می‌‌تواند عملکرد محصول را حدود 10 % کاهش داده و بهره‌‌وری آب را از 53/1 به 72/1 افزایش دهد. به‌طورکلی نتایج نشان داد می‌‌توان با برنامه‌‌ریزی مناسب و دقیق آبیاری به کمک مدل AquaCrop و بهبود مدیریت زراعی، عملکرد دانه گندم و بهره‌‌وری آب را افزایش داد و موجب صرفه‌‌جویی و حفظ آب در مقیاس مزرعه شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of deficit irrigation scenarios at farm level using crop performance modeling in Midandoab plain

نویسندگان [English]

  • Leila Radfard 1
  • Behzad Hessari 2
  • Vahid Rezaverdinejad 3
  • Jamal Ahmadaali 4
1 Department of Water Engineering, Faculty of Agriculture, University of Urmia, Urmia, Iran
2 Department of Water Engineering, Faculty of Agriculture and Department of Environment Research, Urmia Lake Research Institut, University of Urmia, Urmia, Iran.
3 Department of Water Engineering, Faculty of Agriculture, University of Urmia, Urmia, Iran.
4 Agricultural Engineering Research Department, West Azarbaijan Agricultural and Natural Resources Research and Education Center, AREEO, Urmia, Iran.
چکیده [English]

 
Saving, optimizing water consumption, and improving productivity and efficiency indicators in agricultural sector are important and necessary. Miandoab region is of particular importance as a model of reducing consumption in order to conserve real water for the restoration of Lake Urmia. This research was conducted to evaluate water consumption reduction scenarios at the farm level using AquaCrop plant model in Miandoab region. For this purpose, the information on farms related to the sustainable agriculture project of Iran's Wetlands Protection Plan in Miandoab region was used. The data from the first year (the crop year 2016-2017) and the second year (the crop year 2017-2018) were used for model calibration and validation, respectively. The evaluation of statistical indicators shows the accuracy and high ability of the model in simulating grain yield. After the calibration and validation of the model, the irrigation planning scenarios were analyzed and evaluated in the form of reducing irrigation depth by 10, 20, and 30% for the conditions of the second year. The results of field measurements in 2017-2018 showed that the average irrigation depth and the applied irrigation (Irrigation + effective precipitation) for wheat were 405.44 and 580.44 mm respectively and mean grain yield was 8340 kg/ha, then irrigation water productivity and applied irrigation productivity were 2.27 and 1.52 kg/ , respectively. Also, the results of the study of deficit irrigation scenarios showed that the S3 scenario (30% irrigation water reduction) will reduce only 10% crop yield and water productivity will increase from 1.53 to 1.72 kg/ . The values of water productivity indices were calculated using balance components and performance simulated by the model for each farm. In general, the results showed that it is possible to increase the grain yield of wheat and water productivity using AquaCrop model for proper and accurate irrigation planning and crop management improvement, in order to save and conserve water on a farm scale.

کلیدواژه‌ها [English]

  • Crop yield simulation
  • Improving Water productivity
  • Field water management
  • Wheat
  • AquaCrop model
Akbari, M. (2012). Soil  water  balance  and  crop  yield  of  winter  wheat using  AquaCrop  simulation  model. Journal of Agricultural Engineering Research, 12(4), 19-34. (In Persian)
Alizadeh, H., Nazari, B., Parsinezhad, M., Ramazani etedali, H., & Janbaz, H., 2010. Evaluation of AquaCrop Model on weath deficit irrigation in karaj area, Iranian Journal of Irrigation & Drainage, 4(2), pp.273-283. (In Persian)
Azizizohan, A.A., Shahabi Far, M., Ebrahimi Pak, N.A., Razavi, R., Ghalebi, S., Sorayi Tabrizi, M., Toulueai, R., & Piri, R. (2014). Evaluating the efficiency of wheat water consumption in Iran and the world. The first national conference on water and soil management in wheat production. Tehran, Iran. Soil and Water Research Institute. (In Persian)
Chartzoulakis, K., & Bertaki, M. (2015). Sustainable water management in agriculture under climate change. Agriculture and Agricultural Science Procedia4, 88-98.
Chehbouni, A., Escadafal, R., Boulet, G., Duchemin, B., Simonneaux, V., Dedieu, G., ... & Sobrino, J. (2008). The use of remotely sensed data for integrated hydrological modeling in arid and semi-arid regions: the SUDMED program. Int. J. Remote Sens29, 5161-5181.
Curtis, T. and Halford, N.G., 2014. Food security: the challenge of increasing wheat yield and the importance of not compromising food safety. Annals of applied biology164(3), pp.354-372.
Dehghan, H., Alizadeh, A., Ansari, H., & Haghayeghi, M. S. (2011). Evaluation of Water Productivity Indicators in Wheat Irrigated Fields (Case Study: Neyshabur Plain).
Droogers, P., Bastiaanssen, W. G., Beyazgül, M., Kayam, Y., Kite, G. W., & Murray-Rust, H. (2000). Distributed agro-hydrological modeling of an irrigation system in western Turkey. Agricultural Water Management43(2), 183-202.
Ebrahimi, M., Verdinejad, V., & Mjnooni - Heris, A. (2015). Dynamic Simulation through Aqua Crop of Maize Growth under Different Management Decisions of Water Application and Nitrogen Fertilizer Use, Iranian Journal of Soil and Water Research, 46(2), pp. 207-220. (In Persian) doi: 10.22059/ijswr.2015.55926
Emdad, M., & Tafteh, A. (2019). Determining the most suitable depth of irrigation water of wheat plant using the AquaCrop model in order to increase water use efficiency, Iranian Journal of Irrigation & Drainage, 13(2), pp. 417-425. (In Persian)
Emdad, M., Tafteh, A., & Ghalebi, S. (2018). Validation of Aquacrop Model for Simulating Wheat Yield in Different Irrigation Events, Water and Soil, 32(3), pp. 463-473. (In Persian) doi: 10.22067/jsw.v32i3.70189
Esmaili Khoshmardan, A. 2016. Investigation of water productivity and pathology of its management in the agricultural sector of the country. Bureau of research and policies of production sectors.
Farahani, H. J., Izzi, G., & Oweis, T. Y. (2009). Parameterization and evaluation of the AquaCrop model for full and deficit irrigated cotton. Agronomy journal101(3), 469-476.
Goosheh, M., Pazira, E., Gholami, A., Andarzian, B., & Panahpour, E. (2019). Irrigation Scheduling to Increase Water Productivity Using AquaCrop Model, Irrigation Sciences and Engineering, 42(4), pp. 91-105. (In Persian) doi: 10.22055/jise.2018.23252.1650
H, T., KH, M., Z, M., GH, A. (2016). Evaluation of Soybean Yield by AquaCrop Model under Salinity and Deficit Irrigation Management, Journal of Water Research in Agriculture, 30.3(3), pp. 361-372. doi: 10.22092/jwra.2016.107156
He, Q., Li, S., Hu, D., Wang, Y., & Cong, X. (2021). Performance assessment of the AquaCrop model for film-mulched maize with full drip irrigation in Northwest China. Irrigation Science39(2), 277-292.
Hessari, B. 2013, Investigating the upstream and downstream hydrological effects of supplementary irrigation development in the dry areas in the Karkheh basin. PhD thesis, Ahvaz University, Faculty of Water Engineering, Department of Hydrology, 222 p.
Hobbs, P. R., Sayre, K., & Gupta, R. (2008). The role of conservation agriculture in sustainable agriculture. Philosophical Transactions of the Royal Society B: Biological Sciences363(1491), 543-555.
Jalil, A., Akhtar, F., & Awan, U. K. (2020). Evaluation of the AquaCrop model for winter wheat under different irrigation optimization strategies at the downstream Kabul River Basin of Afghanistan. Agricultural Water Management240, 106321.
Jamieson, P. D., Porter, J. R., & Wilson, D. R. (1991). A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand. Field crops research27(4), 337-350.
Jonubi, R., Rezaverdinejad, V., & Salemi, H. (2018). Enhancing field scale water productivity for several rice cultivars under limited water supply. Paddy and water environment16(1), 125-141.
Jorenush, M. H., Boroomand Nasab, S., Naseri, A. A., Pakparvar, M., & Taghvaeian, S. (2019). AquaCrop evaluation to simulate wheat production and planting date in Fars province. Water and Irrigation Management9(1), 95-107.
Karimi, M., & Jolaini, M. (2017). Evaluation of Agricultural Water Productivity Indices in Major Field Crops in Mashhad Plain (Technical Note), Journal of Water and Sustainable Development, 4(1), pp. 133-138. doi: 10.22067/jwsd.v4i1.52783. (In Persian)
Khorsand, A., Verdinejad, V. R., & Shahidi, A. (2014). Performance evaluation of AquaCrop model to predict yield production of wheat, soil water and solute transport under water and salinity stresses. Water and Irrigation Management4(1), 89-104.
Li, F., Yu, D. & Zhao, Y., 2019. Irrigation Scheduling Optimization for Cotton Based on the AquaCrop Model. Water Resources Management, 33(1), pp.39-55.
Masasi, B., Taghvaeian, S., Gowda, P. H., Warren, J., & Marek, G. (2019). Simulating soil water content, evapotranspiration, and yield of variably irrigated grain sorghum using AquaCrop. JAWRA Journal of the American Water Resources Association55(4), 976-993.
Nunes, H. G. G. C., Farias, V. D. S., Sousa, D. P., Costa, D. L. P., Pinto, J. V. N., Moura, V. B., ... & Souza, P. J. O. P. (2021). Parameterization of the AquaCrop model for cowpea and assessing the impact of sowing dates normally used on yield. Agricultural Water Management252, 106880.
Patel, N., Kumar, P., & Singh, N. (2008). Performance evaluation of AquaCrop in simulating potato yield under varying water availability conditions. Indian Agricultural Research Institute.
Perry, C., Steduto, P., & Karajeh, F. (2017). Does improved irrigation technology save water? A review of the evidence. Food and Agriculture Organization of the United Nations, Cairo42.
Pourgholam-Amiji, M., Liaghat, A., Ghameshlou, A. N., & Khoshravesh, M. (2021). The evaluation of DRAINMOD-S and AquaCrop models for simulating the salt concentration in soil profiles in areas with a saline and shallow water table. Journal of Hydrology598, 126259.
Rezavardinjad, V. 2017, Monitoring and investigating the effectiveness of crop-specific and breed-specific techniques to reduce the withdrawal of water resources in the Lake Urmia in the cities of Urmia, Naqdeh, Mahabad and Miandoab: 2th to 4th pheses report. Lake Restoration Headquarters Urmia, 155 pages.
Raes, D., Steduto, P., Hsiao, T.C. , & Fereres, E .(2009). AquaCrop-The FAO crop model forpredicting yield response to water: II. Main algorithms and software description. Agron. J.101:438–447.
Salemi, H., Soom, M. A. M., Lee, T. S., Mousavi, S. F., Ganji, A., & Yusoff, M. K. (2011). Application of AquaCrop model in deficit irrigation management of winter wheat in arid region. African Journal of Agricultural Research6(10), 2204-2215.
Seyed Raoufi, R., Soufizadeh, S., Amiri Larijani, B., AghaAlikhani, M., & Kambouzia, J. (2018). Simulation of growth and yield of various irrigated rice (Oryza sativa L.) genotypes by AquaCrop under different seedling ages. Natural Resource Modeling31(2), e12162.
Singh, R., van Dam, J. C., & Feddes, R. A. (2006). Water productivity analysis of irrigated crops in Sirsa district, India. Agricultural Water Management82(3), 253-278.
Singh, A. K., Tripathy, R., & Chopra, U. K. (2008). Evaluation of CERES-Wheat and CropSyst models for water–nitrogen interactions in wheat crop. Agricultural water management95(7), 776-786.
Steduto, P., Hsiao, T.C.,  Raes, D., & Fereres, E. (2009). AquaCrop-The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agron. J. 101:426–437.
Toumi, J., Er-Raki, S., Ezzahar, J., Khabba, S., Jarlan, L., & Chehbouni, A. (2016). Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management. Agricultural Water Management163, 219-235.
Verdinejad, V. R., Sohrabi, T., Heydari, N., Araghinejad, S. H., & Mamanpoush, A. R. (2009). Assessing irrigation water supply and demand and estimation of crop water productivity in the Zayandehrud Basin (case study: Abshar right irrigation network).
Zhao, Y., Li, F., & Jiang, R. (2021). Irrigation schedule optimization based on the combination of an economic irrigation quota and the AquaCrop model. Irrigation and Drainage70(4), 773-785.