Achirul Nanda, M., Boro Seminar, K., Nandika, D., and Maddu, A. (2018). A comparison study of kernel functions in the support vector machine and its application for termite detection. Information, 9(1), 5.
Adab, H., Morbidelli, R., Saltalippi, C., Moradian M., and Ghalhari, G. A. F. )2020(. Machine learning to estimate surface soil moisture from remote sensing data. Water, 12 (11), 3223.
Adnan, S., Ullah, K., and Ahmed, R. (2020). Variability in meteorological parameters and their impact on evapotranspiration in a humid zone of Pakistan. Meteorological Applications, 27(1), e1859.
Alexandris, S., and Proutsos., N. (2020). How significant is the effect of the surface characteristics on the Reference Evapotranspiration estimates. Agric. Water Manag, 237, 106181.
Algretawee, H., and Alshama, G. (2021). Modeling of Evapotranspiration (ETo) in a Medium Urban Park within a Megacity by Using Artificial Neural Network (ANN) Model. Periodica Polytechnica Civil Engineering. 65(4): 1260–1268.
Allen, R. G., Pereira, L. S., Howell, T. A., and Jensen, M. E. (2011). Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agricultural Water Management, 98(6), 899-920.
Allen, R. G., Pereira, L.S., Raes, D., and Smith, M. (1998). Crop evapotranspiration-guidelines for computing crop water requirements-fao irrigation and drainage paper 56. Fao, Rome, 300(9), D05109.
Aslami, F., Ghorbani, A., Sobhani, B., and Panahandeh, M. (2015). Comparing artificial neural network, support vector machine and object-based methods in preparation land use/cover mapsusing landSat-8 images. Journal of RS and GIS for Natural Resources, 6(3), 1-14.
Ayaz, A., Rajesh, M., Singh, S. K., and Rehana, S. (2021). Estimation of reference evapotranspiration using machine learning models with limited data. AIMS Geosciences, 7(3), 268-290.
Bandyopadhyay, A., Bhadra, A., Raghuwanshi, N. S., and Singh, R. (2009). Temporal trends in estimates of reference evapotranspiration over India. Journal of Hydrologic Engineering, 14(5), 508-515.
Bayat, H., Ebrahimzadeh, G., and Mohanty, B.P. (2021) Investigating the capability of estimating soil thermal conductivity using topographical attributes for the Southern Great Plains, USA. Soil and Tillage Research, 206, 104811.
Berry, W.D.(1993). Understanding Regression Assumptions. Sage Publications, London.
Bidabadi, M., Babazadeh, H., Shiri, J., and Saremi, A. (2022). Estimation of Reference Crop Evapotranspiration Using ANN and ANFIS in Semi-Arid and Dry Climates. Iranian Journal of Irrigation & Drainage, 15(6), 1412-1420. )in Persian(.
Boateng, E. Y., Otoo, J., and Abaye, D. A. (2020). Basic tenets of classification algorithms K-nearest-neighbor, support vector machine, random forest and neural network: a review. Journal of Data Analysis and Information Processing, 8(4), 341-357.
Boser, B.E., Guyon, I.M., and Vapnik, V.N. (1992). A training algorithm for optimal margin classifiers. In D.Haussler, editor, 5th Annual ACM Workshop on COLT, pages 144-152, Pittsburgh, PA.
Breiman, L. (2001). Random forests. Machine Learn. 45: 5–32.
Cherkassky V, Ma Y (2004) Practical selection of SVM parameters and noise estimation for SVM regression. Neural networks 17, 113-126.
Dixon, B., and Candade, N. (2008). Multispectral landuse classification using neural networks and support vector machines: one or the other, or both?. International Journal of Remote Sensing, 29(4), 1185-1206.
Fan, J., Ma, X., Wu, L., Zhang, F., Yu, X., and Zeng, W. (2019). Light Gradient Boosting Machine: An efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data. Agric Water Manag, 225,105758.
Feng, K., and Tian, J. (2021). Forecasting reference evapotranspiration using data mining and limited climatic data. European Journal of Remote Sensing, 54(sup2), 363-371
Feng, Y., Peng, Y., Cui, N., Gong, D., and Zhang, K. (2017). Modeling reference evapotranspiration using extreme learning machine and generalized regression neural network only with temperature data. Comput Electron Agric, 136, 71–78.
Feng, Y., Peng, Y., Cui, N., Gong, D., and Zhang, K. (2017). Modeling reference evapotranspiration using extreme learning machine and generalized regression neural network only with temperature data. Comput. Electron. Agric. 136, 71–78.
Ferreira, L.B., França, F., Oliveira, R.A., De, I.E., and Filho, F. (2019). Estimation of reference evapotranspiration in Brazil with limited meteorological data using ANN and SVM ; a new approach. J Hydrol.
Gill, M., Kemblowski, M.W., and McKee, M. (2007). Soil moisture data assimilation using support vector machines and ensemble Kalman filter 1. JAWRA. Journal of the American Water Resources Association, 43(4), 1004-1015.
Gopinathan, K.K. (1988). A general formula for computing the coefficients of the correlation connecting global solar radiation to sunshine duration. Solar energy, 41, 499-502
Goudarzi, M., Salahi, B., and Hosseini, S. A. (2018). Estimation of evapotranspiration rate due to climate change in the Urmia Lake Basin. Iranian Journal of Watershed Management Science and Engineering, 12(41), 1-12. )in Persian(.
Hagan, M.T., Demuth, H.B., and Beale, M.H. (1996). Neural Network. Design PWS Publishing Co.
Hocking, R.R. (2013). Methods and Applications of Linear Models: Regression and The Analysis of Variance. John Wiley & Sons.
Karimipour, A., and Banitalebi, G. (2020). Sensitivity analysis of meteorological data in estimating reference evapotranspiration with the minimum data using wavelet-neuro-fuzzy, ANN and ANFIS models. Journal of Soil and Water Resources Conservation, 9(3), 47-72. )in Persian(.
Kisi, O., and Alizamir, M., (2018). Modelling reference evapotranspiration using a new wavelet conjunction heuristic method: wavelet extreme learning machine vs wavelet neural networks. Agric. For. Meteorol. 263, 41–48.
Kotsiantis, S., and Pintelas, P. (2004). Combining bagging and boosting. Journal of Computational Intelligence. 1(4): 324–33.
Kulkarni, V.Y., and Sinha P.K. (2014). Effective learning and classification using random forest algorithm. International Journal of Engineering and Innovative Technology (IJEIT), 3, p. 267-273.
Liang, L., Lijuan, L., and Qiang, L. (2010). Temporal variation of reference evapotranspiration during 1961-2005 in the Taoer river basin of Northeast China. Agricultural and Forest Meteorology, 150, 298-306.
Lin G., Chen G., Huang P., and Chou Y. (2009). Support vector machine-based models for hourly reservoir inflow forecasting during typhoon-warning periods. Journal of hydrology. Vol. 372, 17–29.
Liu, W., Yang, L., Zhu, M., Adamowski, J. F., Barzegar, R., Wen, X., and Yin, Z. (2021). Effect of elevation on variation in reference evapotranspiration under climate change in northwest china. Sustainability, 13(18), 10151.
Mattar, M.A., (2018). Using gene expression programming in monthly reference evapotranspiration modeling: a case study in Egypt. Agric. Water Manage. 198, 28–38.
Mehdizadeh, S. (2018). Estimation of daily reference evapotranspiration (ETo) using artificial intelligence methods: offering a new approach for lagged ETo data-based modeling. J. Hydrol. 559, 794–812.
Mehrazar, A., Massah Bavani, A., Mashal, M., and Rahimikhoob, H. (2018). Assessment of climate change impacts on agriculture of the Hashtgerd Plain with emphasis of AR5 models uncertainty. Irrigation Sciences and Engineering, 41(3), 45-59. )in Persian(.
Minasny, B., and McBratney, A. B. (2002). The neuro-m method for fitting neural network parametric pedotransfer functions. Soil Sci. Soc. Am. J, 66 (2), 352– 361.
Nie, T., Yuan, R., Liao, S., Zhang, Z., Gong, Z., Zhao, X., and Jiang, H. (2022). Characteristics of Potential Evapotranspiration Changes and Its Climatic Causes in Heilongjiang Province from 1960 to 2019. Agriculture, 12(12), 2017.
Ning, T.T. (2017). Spatial-Temporal Variation of Evapotranspiration in the Loess Plateau under Budyko Framework and Its Attribution Analysis; Research Center for Soil and Water Conservation and Eco-Environment of the Ministry of Education; Chinese Academy of Sciences: Beijing, China.
Pal, M. (2006). M5 model tree for land cover classification. International Journal of Remote Sensing, 27(4), 825-831
Panaitescu, L., Ilie, C., Lungu, M. L., Popescu, M., Lungu, D., and Nita, S. (2014). Modern approach to the phenomenon of drought and aridity in Central and South Dobrudja. Journal of Environmental Protection and Ecology, 15(1), 110-122.
Petropoulos, G. P., Ireland, G., and Barrett, B. (2015). Surface Soil Moisture Retrievals from Remote Sensing: Current Status, Products & Future Trends, Physics and Chemistry of the Earth, 83 (84), 36-56.
Picton, P. (2000) .Neural Networks, 2nd edn. Palgrave, New York.
Poormohammadi, S., Malekinezhad, H., and Rahimian, M. H. (2010). Investigating the role of physiographical factors on temperature-related parameters affecting evapotranspiration (Case study: Yazd province). Journal of Arid Biome, 1(2), 9-19. )in Persian(.
Rahimikhoob, A. (2014). Comparison between m5 model tree and neural networks for estimating reference evapotranspiration in an arid environment. Water resources management, 28(3),657–669.
Raziei, T., Daneshkar Arasteh, P., and Saghafian, B. (2005). Annual rainfall trend analysis in arid and semi-arid regions of central and eastern Iran. Water and Wastewater, 54, 73-81. )in Persian(.
Roderick, M.L., and Farquhar, G.D. (2002). The cause of decreased pan evaporation over the past 50 years. Science, 298(5597), 1410-1411.
Rodriguez-Galiano, V., Chica-Olmo, M., Abarca-Hernandez, F., Atkinson P., and Jeganathan, C. (2012). Random Forest classification of Mediterranean land covers using multi-seasonal imagery and multi-seasonal texture. Journal of Remote Sensing of Environment, 121: 93-107.
Sandhu, R., and Irmak, S. (2020). Performance assessment of Hybrid-Maize model for rainfed, limited and full irrigation conditions. Agricultural Water Management, 242, 106402.
Sedaghat, A., Shahrestani, M.S., Noroozi, A.A., Nosratabad, A.F., and Bayat, H. (2022). Developing pedotransfer functions using Sentinel-2 satellite spectral indices and Machine learning for estimating the surface soil moisture. Journal of Hydrology, 127423.
Sedaghat, A., Shabanpour, M., Noroozi, A., Fallah Nosratabad, A., and Bayat, H. (2022). The use of spectral indices to estimate soil surface moisture using machine learning algorithms. Iranian Journal of Soil and Water Research, 52(12), 3001-3018. )in Persian(.
Sepehri, S., Abbasi, F., Zarei, G., and Nakhjavanimoghaddam, M. M. (2021). Investigation of Artificial Neural Network Based Models and Sensitivity Analysis for Reference Evapotranspiration Estimating. Iranian Journal of Irrigation & Drainage, 14(6), 2089-2099. )in Persian(.
Shi, Y. (2019). Climate Change on the Tibetan Plateau and Its Impact on Potential Evapotran-Spiration. Beijing Forestry University: Beijing, China.
Shiri J. (2017). Evaluation of FAO56-PM, empirical, semi-empirical and gene expression programming approaches for estimating daily reference evapotranspiration in hyper-arid regions of Iran. Agric Water Manag, 188, 101–114
Singh A., Haghverdi, A., Öztürk, H.S., and Durner, W. (2020). Developing Pseudo Continuous Pedotransfer Functions for International Soils Measured with the Evaporation Method and the HYPROP System: I. The Soil Water Retention Curve. Water, 12, 3425.
Su, J.W., Zhang, X.L., and Shen, B. (2021). Spatio-temporal variation characteristics and influencing factors of potential evapotranspiration in Heilongjiang. Heilongjiang Water Conserv. Sci. Technol, 49, 1–8.
Tabari, H., and Talaee, P. H. (2014). Sensitivity of evapotranspiration to climatic change in different climates. Global and Planetary Change, 115, 16-23.
Tabari, H., Hosseinzadeh Talaee, P., and Willems, P. (2014). Links between Arctic Oscillation (AO) and inter-annual variability of Iranian evapotranspiration, Quaternary International, 345, 148-157.
Tafteh, A., Davatgar, N., and Sedaghat, A. (2022). Estimation of important points on soil water retention curve (SWRC): comparison experimental-physical models and data mining technique. Arabian Journal of Geosciences, 15(10), 1-13.
Vapnik, V.N. (1998). Statistical Learning Theory. Wiley, New York. 736 pp.
Wang, S., Lian, J., Peng, Y., Hu, B., and Chen H. (2019). Generalized reference evapotranspiration models with limited climatic data based on random forest and gene expression programming in Guangxi, China. Agric Water Manag, 221, 220–30.
Wen, X., Si, J., He, Z., Wu, J., Shao, H., & Yu, H. (2015). Support-vector-machine-based models for modeling daily reference evapotranspiration with limited climatic data in extreme arid regions. Water resources management, 29(9), 3195-3209.
Wu, L., Zhou, H., Ma, X., Fan, J., and Zhang, F. (2019). Daily reference evapotranspiration prediction based on hybridized extreme learning machine model with bio-inspired optimization algorithms: Application in contrasting climates of China. J Hydrol, 577,123960.
Xavier, F., Tanaka, A. K., and Amorim, F. A. (2016). Application of data science techniques in evapotranspiration estimation, (Master's thesis).
Yang, Y., Chen, R., Song, Y., Han, C., Liu, J., and Liu, Z. (2019). Sensitivity of potential evapotranspiration to meteorological factors and their elevational gradients in the Qilian Mountains, northwestern China. J. Hydrol, 568, 147–159
Yassin, MA., Alazba, A.A., and Mattar, MA. (2016). Artificial neural networks versus gene expression programming for estimating reference evapotranspiration in arid climate. Agric Water Manag, 163, 110–24.
Zhou, B. R., Li, F. X., Xiao, H. B., Hu, A. J., and Yan, L. D. (2014). Temporal and spatial differentiation characteristics of potential evapotranspiration and climate attribution in the source region of the Three Rivers. J. Nat. Resour, 29, 2068-2077.
Zorati Pur, E., Neisi, L., Golabi, M., Bazaz, A., and Zoratipur, A. (2019). Simulation and Comparison of Potential Evapotranspiration by Artificial Neural Networks, ANFIS (Fuzzy Neural Network) and Decision Making M5 (Case Study; Synaptic Station of Shiraz). Iran-Water Resources Research, 15(1), 365-371. )in Persian(.