مدل سازی پاسخ گیاه دانه روغنی کاملینا به تنش آبی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه دکتری آبیاری و زهکشی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

2 گروه مهندسی معدن و محیط زیست دانشکده فنی و مهندسی / دانشگاه تربیت مدرس/ تهران ایران

3 گروه زراعت، دانشکده کشاورزی دانشگاه تربیت مدرس، تهران، ایران

چکیده

تنش آبی یکی از مهم‌ترین تنش‌های محدودکننده‌ی رشد و عملکرد گیاهان به ‌ویژه در مناطق خشک و نیمه‌خشک است. بهترین راهکار برای مواجهه با تنش آبی، انتخاب گیاه سازگار به کم آبی است که بر پایۀ روش‌های مطمئن غربالگری از جمله پلی‌اتیلن گلایکول (PEG ) صورت می‌گیرد. در این پژوهش به ‌منظور ارزیابی مدل‌های تخمین‌گر و بررسی کمّی پاسخ کاملینا به سطوح آبی در مرحله‌ی جوانه‌زنی، مدل‌های کم‌آبی فدس و همکاران (F)، ون گنوختن (VG)، دیرکسن و آگوستین (DA) و همایی(H)  با هم مقایسه شدند. تجزیه‌وتحلیل داده‌ها با استفاده از نرم‌افزار SAS انجام شد. آزمایش‌ها در قالب طرح کاملاً تصادفی در پتری دیش در سال 1398 با سه تکرار در دانشگاه تربیت مدرس انجام شد. تیمارهای آبی شامل شش پتانسیل ماتریک 0 (شاهد بدون تنش)، 3000، 6000، 9000، 12000، 15000، 18000 سانتی‌متر بودند. پارامترهای جوانه‌زنی با استفاده از بسته SeedCalc در نرم‌افزار R محاسبه و از MATLAB برای کد نویسی و برازش مدل‌ها استفاده شد. حد آستانه‌ی تحمل به کم آبی شاخص‌های سرعت جوانه‌زنی (GSI)، میانگین طول گیاهچه (M-SL)، میانگین نسبت ریشه‌چه به ساقه‌چه (Razao) و بنیه بذر SV-S)) به ترتیب در تیمارهای شاهد، 6000 ،3000  و3000 سانتی‌متر بدست آمد. بر پایۀ پتانسیل‌های بدست آمده برای هر چهار شاخص جوانه‌زنی مورد بررسی، کاملینا گیاهی بسیار مقاوم به کم‌آبی است. در هر چهار شاخص GSI، M-SL ، SV-S و Razao مدل H به دلیل RMSE کوچک‌تر و EF بزرگ‌تر عملکرد بهتری ارائه داد. بیشترین مقدار پارامترهای GSI، Razao، M-SL، طول ساقه‌چه و طول ریشه‌چه به ترتیب در پتانسیل‌های شاهد، 3000، 6000، 3000 و 6000 سانتی‌متر بدست آمد که نشان دهندۀ مناسب بودن کشت کاملینا در مناطق تحت تنش آبی می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Modelling oil seed camelina response to water stress

نویسندگان [English]

  • Mansoure Bayram 1
  • Mehdi Homaee 2
  • ali mokhtasibidgoli 3
1 , Department of Irrigation and Drainage, College of Agriculture, Tarbiat Modares university, Tehran, Iran.
2 Department of Mining and Environmental Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran
3 Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
چکیده [English]

Water stress is one of the dominant stresses limiting crop growth and yield, particularly in arid and semi-arid regions. The best strategy to deal with water stress is choosing a water-tolerant plant based on reliable screening methods such as polyethylene glycol (PEG). To evaluate different predictive models and quantitatively investigate camelina response to drought stress during the germination stage, an experiment was conducted in a completely randomized design with three replications. Water stress treatments included six matric potentials of PEG6000: 0 (control, without stress), 3000, 6000, 9000, 12000, 15000, 18000 cm. Germination indicators were calculated using the SeedCalc package in R software and MATLAB was used for programming and models fitting. Water stress models including Feddes et al. (F), van Genuchten (VG), Dirksen and Augustijn (DA) and Homaee (H) were assessed and compared afterwards. Data analysis was performed using SAS software (V. 9.4). The threshold values under germination rate (GSI), mean seedling length (M-SL), mean root-to-stem ratio (Razao) and seed vigor (SV-S)) were then obtained for the control, 6000, 3000 and 3000 cm, respectively. According to these four germination indices, the camelina is very tolerant to water stress. In all four indicators of GSI, M-SL, SV-S and Razao, the H model presented the best performance. The highest values of GSI, Razao, M-SL, stem and root length were obtained at matric potentials of control, 3000, 6000, 3000 and 6000 cm, respectively, indicating the suitability of camelina cultivation in areas under water shortage.

کلیدواژه‌ها [English]

  • germination
  • oil seeds
  • seed vigor
  • threshold value
  • water shortage
Agathokleous, E., Belz, R. G., Kitao, M., Koike, T., & Calabrese, E. J. (2019). Does the root to shoot ratio show a hormetic response to stress? An ecological and environmental perspective. Journal of Forestry Research, 30(5), 1569-1580.
Almansouri, M., Kinet, J. M., & Lutts, S. (2001). Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant and soil231(2), 243-254.
Almas, D. E., Bagherikia, S., & Mashaki, K. M. (2013). Effects of Salt and Water Stresses on Germination and Seedling Growth of Artemisia vulgaris L. International Journal of Agriculture and Crop Sciences6(11), 762.
Anonymous. (2014). International rules for seed testing. Seed Science and Technology 24: 1- 335 (supplement). International Seed Testing Association (ISTA), Zurich, Switzerland. (Handbook)
Arbona, V., Manzi, M., Ollas, C. D., & Gómez-Cadenas, A. (2013). Metabolomics as a tool to investigate abiotic stress tolerance in plants. International journal of molecular sciences14(3), 4885-4911.
Awan SA, Khan I, Rizwan M, Zhang X, Brestic M, Khan A, et al. Exogenous abscisic acid and jasmonic acid restrain polyethylene glycol‐induced drought by improving the growth and antioxidative enzyme activities in pearl millet. Physiol Plant. 2021;172: 809–819. pmid:33094486.
Bangar, P., Chaudhury, A., Tiwari, B., Kumar, S., Kumari, R., & Bhat, K. V. (2019). Morphophysiological and biochemical response of mungbean [Vigna radiata (L.) Wilczek] varieties at different developmental stages under drought stress. Turkish Journal of Biology43(1), 58-69.
Benincasa, M. M. P. (2003). Departamento de biologia aplicada à agropecuária. Análise de crescimento de plantas (noções básicas). FCAV-UNESP: Jaboticabal, 02-06.
Botía, P., Carvajal, M., Cerdá, A., & Martínez, V. (1998). Response of eight Cucumis melo cultivars to salinity during germination and early vegetative growth. Agronomie18(8-9), 503-513.
Bybordi, A. (2010). The influence of salt stress on seed germination, growth and yield of canola cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca38(1), 128-133.
Bybordi, A., & Tabatabaei, J. (2009). Effect of salinity stress on germination and seedling properties in canola cultivars (Brassica napus L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca37(2), 71-76.
Čanak, P., Jeromela, A. M., Vujošević, B., Kiprovski, B., Mitrović, B., Alberghini, B., ... & Zanetti, F. (2020). Is Drought Stress Tolerance Affected by Biotypes and Seed Size in the Emerging Oilseed Crop Camelina?. Agronomy10(12), 1856.
Channaoui, S., El Idrissi, I. S., Mazouz, H., & Nabloussi, A. (2019). Reaction of some rapeseed (Brassica napus L.) genotypes to different drought stress levels during germination and seedling growth stages. OCL26, 23.
Channaoui, S., El Kahkahi, R., Charafi, J., Mazouz, H., El Fechtali, M., & Nabloussi, A. (2017). Germination and seedling growth of a set of rapeseed (Brassica napus) varieties under drought stress conditions. International Journal of Environment, Agriculture and Biotechnology2(1), 238696.
Chaves, M. M., Pereira, J. S., Maroco, J., Rodrigues, M. L., Ricardo, C. P. P., Osório, M. L., ... & Pinheiro, C. (2002). How plants cope with water stress in the field? Photosynthesis and growth. Annals of botany89(7), 907-916.
Cheong, Y. H., Kim, K. N., Pandey, G. K., Gupta, R., Grant, J. J., & Luan, S. (2003). CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. The Plant Cell15(8), 1833-1845.
Dai, J., Huff, D. R., & Schlossberg, M. J. (2009). Salinity effects on seed germination and vegetative growth of greens‐type Poa annua relative to other cool‐season turfgrass species. Crop science49(2), 696-703.
 Dhanda, S. S., Sethi, G. S., & Behl, R. K. (2004). Indices of drought tolerance in wheat genotypes at early stages of plant growth. Journal of agronomy and crop science190(1), 6-12.
Dirksen, C., & Augustijn, D. C. M. (1988). Root water uptake function for nonuniform pressure and osmotic potentials. In Agronomy Abstracts (p. 182).
Dirksen, C., Kool, J. B., Koorevaar, P., & Van Genuchten, M. T. (1993). HYSWASOR—simulation model of hysteretic water and solute transport in the root zone. In Water flow and solute transport in soils (pp. 99-122). Springer, Berlin, Heidelberg.
Fahad, S., Bajwa, A.A., Nazir, U., Anjum, S.A., Farooq, A., Zohaib, A., Sadia, S., Nasim, W., Adkins, S., Saud, S., & Ihsan, M.Z., (2017). Crop production under drought and heat stress: plant responses and management options. Frontiers in plant science8, 1147.
FAO. 2018. Progress on level of water stress - Global baseline for SDG 6 Indicator 6.4.2. Rome. FAO/UN-Water. 58 pp. Licence: CC BYNC-SA 3.0 IGO
Feddes, R.A., Kowalik, P.J., & Zaradny, H. (1978). Simulation of field water use and crop yield. Simulation of field water use and crop yield.
Filipović, A. (2020). Water plant and soil relation under stress situations. Soil Moisture Importance, 73.‏
Heshmat, O., Saeed, H. A., & Fardin, K. (2011). The improvement of seed germination traits in canola (Brassica napus L.) as affected by saline and drought stress. Journal of Agricultural Technology7(3), 611-622.
Homaee, M. (1999). Root water uptake under non-uniform transient salinity and water stress. Wageningen University and Research.
Homaee, M., Dirksen, C., & Feddes, R. A. (2002a). Simulation of root water uptake: I. Non-uniform transient salinity using different macroscopic reduction functions. Agricultural Water Management57(2), 89-109.
Homaee, M., Feddes, R. A., & Dirksen, C. (2002b). Simulation of root water uptake: II. Non-uniform transient water stress using different reduction functions. Agricultural water management57(2), 111-126.
Hunsaker, D.J., French, A.N. and Thorp, K.R., 2013. Camelina water use and seed yield response to irrigation scheduling in an arid environment. Irrigation Science31(5), pp.911-929.
ISTA. (2015). The germination test. In: International rules for seed testing. Zurich, Switzerland: In International Seed Testing Association (pp. 5-16).
ISTA. (2019). Rules for testing seeds. International Seed Testing Association (ISTA), Zurich, Switzerland.
Jyoti, B., & Yadav, S. K. (2012). Comparative study on biochemical parameters and antioxidant enzymes in a drought tolerant and a sensitive variety of horsegram (Macrotyloma uniflorum) under drought stress. American Journal of Plant Physiology, 7(1), 17-29.
 Kaya, M. D., Ipek, A., & ÖZTÜRK, A. (2003). Effects of different soil salinity levels on germination and seedling growth of safflower (Carthamus tinctorius L.). Turkish Journal of Agriculture and Forestry27(4), 221-227.
Kaydan, D., & Yagmur, M. (2008). Germination, seedling growth and relative water content of shoot in different seed sizes of triticale under osmotic stress of water and NaCl. African Journal of Biotechnology7(16), 2862-2868.
Keshta, M. M., Hammad, K. M., & Sorour, W. A. I. (1999). Evaluation of rapeseed genotypes in saline soil. In Proceedings of the 10th International Rape Seed Congress. Canberra, Australia.253-258.
Khalvandi, M., Siosemardeh, A., Roohi, E., & Keramati, S. (2021). Salicylic acid alleviated the effect of drought stress on photosynthetic characteristics and leaf protein pattern in winter wheat. Heliyon7(1), e05908.
Labouriau, L. G. (1983). Uma nova linha de pesquisa na fisiologia da germinação das sementes. In Anais do XXXIV Congresso Nacional de Botânica. SBB, Porto Alegre (pp. 11-50).
Li, Y., & Sun, X. S. (2015). Camelina oil derivatives and adhesion properties. Industrial Crops and Products73, 73-80.
Maguire, J. D. (1962). Speed of germination—Aid in selection and evaluation for seedling emergence and vigor 1. Crop science2(2), 176-177.
Makkawi, M., El Balla, M., Bishaw, Z., & VAN GASTEL, A. G. (1999). The relationship between seed vigour tests and field emergence in lentil (Lens culinaris Medikus). Seed science and technology27(2), 657-668.
Manivannan, P., Jaleel, C. A., Somasundaram, R., & Panneerselvam, R. (2008). Osmoregulation and antioxidant metabolism in drought-stressed Helianthus annuus under triadimefon drenching. Comptes Rendus Biologies331(6), 418-425.
Mesgaran, M. B., Madani, K., Hashemi, H., & Azadi, P. (2017). Iran’s land suitability for agriculture. Scientific reports7(1), 1-12.
Michel, B. E., & Kaufmann, M. R. (1973). The osmotic potential of polyethylene glycol 6000. Plant physiology51(5), 914-916.
Miladinović, D., Vollmann, J., Molinero-Ruiz, L., & Torres, M. (2019). Advances in Oil Crops Research—Classical and New Approaches to Achieve Sustainable Productivity. Frontiers in Plant Science, 10, 791.
Mirzaee, M., Moeini, A., & Ghanati, F. (2010). Effect of drought Stress on Germination and Seedling Growth in some Canola (Brassica napus L.) Cultivars. Master Thesis, Faculty of Agriculture, Tarbiat Modares University (In farsi).
Mousa, M. M. N., Balouchi, H., & Attarzadeh, M. (2015). Effect of seed priming on some germination traits and seedling growth of safflower under drought stress. Iranian Journal of Seed Research2(1).
Muscolo A., Sidari M., Anastasi U., Santonoceto C., Maggio A. Effect of PEG-induced drought stress on seed germination of four lentil genotypes. Journal of Plant Interactions. 9: 354–363.
Nakagawa, J., Krzyzanowski, F.C., Vieira, R.D., & França-Neto, J.B. (1999). Testes de vigor baseados no desempenho das plântulas. In: Krzyzanowski, Fc; Vieira, Rd; França Neto, Jb Vigor de sementes: conceitos e testes. Londrina: Abrates, 9-13.
Nezhadahmadi, A., Prodhan, Z. H., & Faruq, G. (2013). Drought tolerance in wheat. The Scientific World Journal.
Opoku, G., Davies, F. M., Zetina, E. V., & Gamble, E. E. (1996). Relationship between seed vigour and yield of white beans (Phaseolus vulgaris L.). Plant Varieties and Seeds.
Ranjbarfordoei A., Samson R., Van Damme P., Lemeur R. Effects of Drought Stress Induced by Polyethylene Glycol on Pigment Content and Photosynthetic Gas Exchange of Pistacia Khinjuk and P. Mutica. Photosynthetica.38:443–447.
Rezayian, M., Niknam, V., & Ebrahimzadeh, H. (2018). Effects of drought stress on the seedling growth, development, and metabolic activity in different cultivars of canola. Soil Science and Plant Nutrition64(3), 360-369.
Rockström, J., Falkenmark, M., Karlberg, L., Hoff, H., Rost, S., & Gerten, D. (2009). Future water availability for global food production: The potential of green water for increasing resilience to global change. Water resources research45(7).‏
Sako, Y., McDonald, M. B., Fujimura, K., Evans, A. F., & Bennett, M. A. (2001). A system for automated seed vigour assessment. Seed science and technology29(3), 625-636.
Sanchez, P. L., Chen, M. K., Pessarakli, M., Hill, H. J., Gore, M. A., & Jenks, M. A. (2014). Effects of temperature and salinity on germination of non-pelleted and pelleted guayule (Parthenium argentatum A. Gray) seeds. Industrial Crops and Products55, 90-96.
Sarv, V. (2017). A comparative study of camelina, canola and hemp seed processing and products (Doctoral dissertation, University of Toronto (Canada)).
Shahverdikandi, M. A., Tobeh, A., Godehkahriz, S. J., & Rastegar, Z. (2011). The study of germination index of canola cultivars for drought resistance. Int. J. Agron. Plant Prod2(3), 89-95.
Silva, L. J. D., Medeiros, A. D. D., & Oliveira, A. M. S. (2019). SeedCalc, a new automated R software tool for germination and seedling length data processing. Journal of Seed Science41, 250-257.
Tobe, K., Zhang, L., Qiu, G. Y., Shimizu, H., & Omasa, K. (2001). Characteristics of seed germination in five non-halophytic Chinese desert shrub species. Journal of Arid Environments47(2), 191-201.
Türkan, I., Bor, M., Özdemir, F., & Koca, H. (2005). Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Science168(1), 223-231.
USEPA. (2013). Regulation of Fuels and Fuel Additives: 2012 Renewable Fuel Standards; Final Rule. Federal Register78(158), 49794-830.
van Genuchten, M. Th. (1987). A numerical model for water and solute movement in and below the root zone. Research Report, U. S. Salinity Lab. Riverside CA.
van Slyke, T. (2019). Fields of Dreams: Scenarios to Produce Selected Biomass and Renewable Jet Fuels that Fulfill European Union Sustainability Criteria.
Verslues, P.E. and E.A. Bray, 2004. LWR1 and LWR2 are required for osmoregulation and osmotic adjustment in Arabidopsis. Plant Physiol., 136: 2831-2842.
Waraich, E. A., Ahmed, Z., Ahmad, R., Ashraf, M. Y., Naeem, M. S., & Rengel, Z. (2013). 'Camelina sativa', a climate proof crop, has high nutritive value and multiple-uses: A review. Australian Journal of Crop Science7(10), 1551-1559.
Warwick, S. I., & Francis, A. (2006). The biology of invasive alien plants in Canada. 6. Berteroa incana (L.) DC. Canadian journal of plant science86(4), 1297-1309.
Windauer, L., Altuna, A., & Benech-Arnold, R. (2007). Hydrotime analysis of Lesquerella fendleri seed germination responses to priming treatments. Industrial Crops and Products25(1), 70-74.
Wood, A. J. (2007). Eco-physiological adaptations to limited water environments. Plant abiotic stress, 1.
Zarei, L., Farshadfar, E., Haghparast, R., Rajabi, R., & Badieh, M. M. S. (2007). Evaluation of some indirect traits and indices to identify drought tolerance in bread wheat (Triticum aestivum L.). Asian Journal of Plant Sciences.
Zeng, Y. J., Wang, Y. R., & Zhang, J. M. (2010). Is reduced seed germination due to water limitation a special survival strategy used by xerophytes in arid dunes?. Journal of Arid Environments74(4), 508-511.
Zhang, H., Sun, X., & Dai, M. (2021). Improving crop drought resistance with plant growth regulators and rhizobacteria: Mechanisms, applications, and perspectives. Plant Communications, 100228.