پیش‌نگری خشکسالی تحت سناریو‌های SSP تا پایان قرن بیست‌ویکم، مطالعه موردی: حوضه دریاچه ارومیه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار اقلیم شناسی، گروه جغرافیا، دانشگاه فردوسی مشهد، مشهد

2 پژوهشگر پسادکتری اقلیم شناسی، گروه جغرافیا، دانشگاه فردوسی مشهد، مشهد

3 دانشجوی دکتری اقلیم شناسی، گروه جغرافیا، دانشگاه یزد

10.22059/ijswr.2022.343700.669278

چکیده

پیش­نگری رخدادهای خشکسالی در یک منطقه مستعد خشکسالی همانند حوضه دریاچه ارومیه که یکی از آسیب پذیرترین مناطق برای مواجهه با خشکسالی­های مکرر و با شدت بالا در ایران است، برای کاهش ریسک مرتبط با آن بسیار مهم است. این پژوهش، با هدف پیش­نگری خشکسالی هواشناسی در حوضه دریاچه ارومیه انجام شده است. برای این منظور مدل­های تصحیح شده اریبی CMIP6 تحت سناریوهای خوش­بینانه (SSP1-2.6) و خیلی بدبینانه (SSP5-8.5) طی دوره 2100-2026 با استفاده از شاخص خشکسالی بارش تبخیر-تعرّق استاندارد شده هواشناسی (SPEI-1) مورد بررسی قرار گرفته­اند. درستی برونداد بارش مدل­های منفرد CMIP6 و مدل همادی تولید شده (MME) با روش میانگین وزنی با رویکرد مستقل (IWM) با سه سنجه آماری NRMSE، MBE و PCC مورد بررسی قرار گرفت. نتایج نشان داد مدل­های منتخب CMIP6 به رغم کم­برآوردی بارش در ایستگاه­های نماینده مورد بررسی، کارایی مناسبی برای برآورد متغیر بارش در سطح حوضه دارند. مدل همادی تولید شده مقدار سنجه PCC را در تمامی ایستگاه­ها به 99/0 رسانده است. مقایسه شاخص SPEI-1 بین برونداد CMIP6-MME و داده­های هشت ایستگاه هواشناسی نشان از انطباق خوب شاخص در فصول پاییز، زمستان و بهار است. پیش­نگری خشکسالی با مدل­های CMIP6 نشان از افزایش قابل توجه رخدادهای خشکسالی عمدتاً در غرب و شمال حوضه برای دوره گرم سال دارد. شدت خشکسالی و درصد سال­های کمتر از نرمال در آینده میانی (2075-2051) بیش­تر از آینده دور (2100-2076) بخصوص برای سناریو SSP5-8.5 در متوسط پهنه­ای حوضه است. این نتایج می­تواند مبنایی برای توسعه اقدامات سازگاری با خشکسالی در حوضه دریاچه ارومیه را فراهم کند.

کلیدواژه‌ها


عنوان مقاله [English]

Drought projection in the Urmia Lake basin under SSP Scenarios until the End of the 21st Century

نویسندگان [English]

  • Azar Zarrin 1
  • Abbasali Dadashi-Roudbari 2
  • Elham Kadkhoda 3
1 Associate Professor, Department of Geography, Ferdowsi University of Mashhad, Mashhad.
2 Department of Geography, Ferdowsi University of Mashhad, Mashhad.
3 Department of Geography, Yazd University, Yazd
چکیده [English]

The Urmia Lake basin is one of the most vulnerable areas to frequent high-intensity droughts in Iran. The aim of this study is to project meteorological drought in the Urmia Lake basin through the 21st century. For this purpose, the standardized precipitation-evapotranspiration index (SPEI-1) was investigated using the bias-corrected CMIP6 models under SSP1-2.6 and SSP5-8.5 scenarios during the period 2026-2100. The performance of individual CMIP6 models and multi-model ensemble (MME) generated by the independent weighted mean (IWM) method with three metrics including NRMSE, MBE, and PCC were evaluated. Overall, all individual CMIP6 models showed a good performance in the Lake Urmia basin, despite some overestimations of precipitation. However, the generated CMIP6-MME has increased the PCC values in all stations to 0.99. The CMIP6 MME showed a good performance of the SPEI-1 index in autumn, winter, and spring against observation from ground stations in the historical period. The result indicates a significant increase in drought events mainly in the west and north of the Urmia Lake basin in the warm period of the year during the 21st century. The severity and the percentage of below-normal years for the basin-averaged drought in the middle 21st century (2051-2075) is more than the ones in the far future (2076-2100), especially for the SSP5-8.5 scenario. These results can provide a basis for the development of drought adaptation plans in the Urmia Lake basin.

کلیدواژه‌ها [English]

  • drought
  • SPEI index
  • CMIP6 models
  • ensemble model
  • Urmia Lake basin
Abbasi, A., Khalili, K., Behmanesh, J., & Shirzad, A. (2019). Drought monitoring and prediction using SPEI index and gene expression programming model in the west of Urmia Lake. Theoretical and Applied Climatology, 138(1), 553-567.
Abbasian, M. S., Najafi, M. R., & Abrishamchi, A. (2021). Increasing risk of meteorological drought in the Lake Urmia basin under climate change: Introducing the precipitation–temperature deciles index. Journal of Hydrology, 592, 125586.
AghaKouchak, A., Farahmand, A., Melton, F. S., Teixeira, J., Anderson, M. C., Wardlow, B. D., & Hain, C. R. (2015). Remote sensing of drought: Progress, challenges and opportunities. Reviews of Geophysics, 53(2), 452-480.
Aguayo, R., León-Muñoz, J., Garreaud, R., & Montecinos, A. (2021). Hydrological droughts in the southern Andes (40–45° S) from an ensemble experiment using CMIP5 and CMIP6 models. Scientific reports, 11(1), 1-16.
Almazroui, M., Saeed, S., Saeed, F., Islam, M. N., & Ismail, M. (2020). Projections of precipitation and temperature over the South Asian countries in CMIP6. Earth Systems and Environment, 4(2), 297-320.
Asadi Rahim-Begi, N., Zarrin, A., Modfidi, A., Dadashi-Roudbari, A. (2022). Seasonal Distribution Analysis of Extreme Precipitation in Iran using AgERA5 dataset. Iranian Journal of Soil and Water Research, 52(11), 2723-2737 (In Farsi).
Bai, H., Xiao, D., Wang, B., Liu, D. L., Feng, P., & Tang, J. (2021). Multi‐model ensemble of CMIP6 projections for future extreme climate stress on wheat in the North China Plain. International Journal of Climatology, 41, E171-E186.
Bishop, C. H., & Abramowitz, G. (2013). Climate model dependence and the replicate Earth paradigm. Climate dynamics, 41(3), 885-900.
Bazrafshan, O., Mahmudzadeh, F., & Bazrafshan, J. (2017). Evaluation of temporal trends of the drought indices SPI and SPEI in the Southern Coast of Iran. Desert Management, 4(8), 54-69 (In Farsi).
Chappell, A., Renzullo, L. J., Raupach, T. H., & Haylock, M. (2013). Evaluating geostatistical methods of blending satellite and gauge data to estimate near real-time daily rainfall for Australia. Journal of hydrology, 493, 105-114.
Chen, H., Sun, J., Lin, W., & Xu, H. (2020). Comparison of CMIP6 and CMIP5 models in simulating climate extremes. Science Bulletin, 65(17), 1415-1418.
Cook, B. I., Mankin, J. S., Marvel, K., Williams, A. P., Smerdon, J. E., & Anchukaitis, K. J. (2020). Twenty‐first century drought projections in the CMIP6 forcing scenarios. Earth's Future, 8(6), e2019EF001461.
Cook, B. I., Mankin, J. S., Marvel, K., Williams, A. P., Smerdon, J. E., & Anchukaitis, K. J. (2020). Twenty‐first century drought projections in the CMIP6 forcing scenarios. Earth's Future, 8(6), e2019EF001461.
Dai, A. (2013). Increasing drought under global warming in observations and models. Nature climate change, 3(1), 52-58.
Dai, A., Zhao, T., & Chen, J. (2018). Climate change and drought: a precipitation and evaporation perspective. Current Climate Change Reports, 4(3), 301-312.
Davarpanah, S., Erfanian, M., & Javan, K. (2021). Assessment of climate change impacts on drought and wet spells in Lake Urmia Basin. Pure and Applied Geophysics, 178(2), 545-563.
Dhurmea, K. R., Boojhawon, R., & Rughooputh, S. D. D. V. (2019). A drought climatology for Mauritius using the standardized precipitation index. Hydrological Sciences Journal, 64(2), 227-240.
Dosio, A., Jury, M. W., Almazroui, M., Ashfaq, M., Diallo, I., Engelbrecht, F. A., ... & Tamoffo, A. T. (2021). Projected future daily characteristics of African precipitation based on global (CMIP5, CMIP6) and regional (CORDEX, CORDEX-CORE) climate models. Climate Dynamics, 57(11), 3135-3158.
Ghamghami, M., & Irannejad, P. (2019). An analysis of droughts in Iran during 1988–2017. SN Applied Sciences, 1(10), 1-21.
Goovaerts, P. (2000). Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of hydrology, 228(1-2), 113-129.
Grimes, D. I., & Pardo‐Igúzquiza, E. (2010). Geostatistical Analysis of Rainfall. Geographical analysis, 42(2), 136-160.
Hamal, K., Sharma, S., Khadka, N., Haile, G. G., Joshi, B. B., Xu, T., & Dawadi, B. (2020). Assessment of drought impacts on crop yields across Nepal during 1987–2017. Meteorological Applications, 27(5), e1950.
IPCC, (2012). “Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX).” A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change, edited by C. B. Field, V. Barros, T. F. Stocker, and Q. Dahe, Cambridge University Press: Cambridge, UK.
Lian, X., Piao, S., Li, L. Z., Li, Y., Huntingford, C., Ciais, P., ... & McVicar, T. R. (2020). Summer soil drying exacerbated by earlier spring greening of northern vegetation. Science advances, 6(1), eaax0255.
Mahsafar, H., Maknoon, R., Saghafian, B. (2010). The Impact of Climate Change on Urmia Lake Water Level. Iran-Water Resources Research, 7(1), 47-58.
Meehl, G. A., Senior, C. A., Eyring, V., Flato, G., Lamarque, J. F., Stouffer, R. J., ... & Schlund, M. (2020). Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Science Advances, 6(26), eaba1981.
Meroni, M., Rembold, F., Fasbender, D., & Vrieling, A. (2017). Evaluation of the Standardized Precipitation Index as an early predictor of seasonal vegetation production anomalies in the Sahel. Remote sensing letters, 8(4), 301-310.
Mirdashtvan, M., Malekian, A., Mohseni Saravi, M. (2017). Climate change assessment under greenhouse gases emission scenarios: Urmia Lake Basin. Desert Management, 5(9), 15-30. doi: 10.22034/jdmal.2017.27854.
Mirgol, B., Nazari, M., Etedali, H. R., & Zamanian, K. (2021). Past and future drought trends, duration, and frequency in the semi‐arid Urmia Lake Basin under a changing climate. Meteorological Applications, 28(4), e2009.
Mishra, V., Bhatia, U., & Tiwari, A. D. (2020). Bias-corrected climate projections for South Asia from coupled model intercomparison project-6. Scientific data, 7(1), 1-13.
Mo, K. C., & Lettenmaier, D. P. (2016). Precipitation deficit flash droughts over the United States. Journal of Hydrometeorology, 17(4), 1169-1184.
Mostafazadeh, R., Zabihi, M. (2016). Comparison of SPI and SPEI indices to meteorological drought assessment using R programming (Case study: Kurdistan Province). Journal of the Earth and Space Physics, 42(3), 633-643 (In Farsi).
O'Neill, B. C., Tebaldi, C., Van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., ... & Sanderson, B. M. (2016). The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9(9), 3461-3482.
Poljansek, K., Marín Ferrer, M., De Groeve, T., & Clark, I. (2017). Science for disaster risk management 2017: knowing better and losing less. ETH Zurich.
Rezaei, A. (2021). Ocean-atmosphere circulation controls on integrated meteorological and agricultural drought over Iran. Journal of Hydrology, 603, 126928.
Shamloo, N., Sattari, M. T., & Apaydin, H. (2022). Agricultural drought survey using MODIS-based image indices at the regional scale: case study of the Urmia Lake Basin, Iran. Theoretical and Applied Climatology, 1-13. https://doi.org/10.1007/s00704-022-04023-6.
Sharma, S., Hamal, K., Khadka, N., Ali, M., Subedi, M., Hussain, G., ... & Dawadi, B. (2021). Projected Drought Conditions over Southern Slope of the Central Himalaya Using CMIP6 Models. Earth Systems and Environment, 5(4), 849-859.
Song, Y. H., Shahid, S., & Chung, E. S. (2022). Differences in multi‐model ensembles of CMIP5 and CMIP6 projections for future droughts in South Korea. International Journal of Climatology, 42(5), 2688-2716.
Su, B., Huang, J., Mondal, S. K., Zhai, J., Wang, Y., Wen, S., ... & Li, A. (2021). Insight from CMIP6 SSP-RCP scenarios for future drought characteristics in China. Atmospheric Research, 250, 105375.
Swann, A. L. (2018). Plants and drought in a changing climate. Current Climate Change Reports, 4(2), 192-201.
Tajbakhsh, S., Eisakhani, N., & Fazl Kazemi, A. (2015). Assessment of meteorological drought in Iran using standardized precipitation and evapotranspiration index (SPEI). Journal of the Earth and Space Physics, 41(2), 313-321 (In Farsi).
Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of climate, 23(7), 1696-1718.
Vicente-Serrano, S. M., Quiring, S. M., Pena-Gallardo, M., Yuan, S., & Dominguez-Castro, F. (2020). A review of environmental droughts: Increased risk under global warming? Earth-Science Reviews, 201, 102953.
Wang, T., Tu, X., Singh, V. P., Chen, X., & Lin, K. (2021). Global data assessment and analysis of drought characteristics based on CMIP6. Journal of Hydrology, 596, 126091.
Wang, T., Tu, X., Singh, V. P., Chen, X., & Lin, K. (2021). Global data assessment and analysis of drought characteristics based on CMIP6. Journal of Hydrology, 596, 126091.
Weedon, G. P., Gomes, S., Viterbo, P., Shuttleworth, W. J., Blyth, E., Österle, H., ... & Best, M. (2011). Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century. Journal of Hydrometeorology, 12(5), 823-848.
Xu, L., Chen, N., & Zhang, X. (2019). Global drought trends under 1.5 and 2 C warming. International Journal of Climatology, 39(4), 2375-2385.
Xu, Y., Zhang, X., Wang, X., Hao, Z., Singh, V. P., & Hao, F. (2019). Propagation from meteorological drought to hydrological drought under the impact of human activities: A case study in northern China. Journal of Hydrology, 579, 124147.
Zarch, M. A. A., Sivakumar, B., & Sharma, A. (2015). Droughts in a warming climate: A global assessment of Standardized precipitation index (SPI) and Reconnaissance drought index (RDI). Journal of hydrology, 526, 183-195.
Zarrin, A., Dadashi Roudbari, A. (2020). Projection the Long-Term Outlook Iran Future Temperature Based on the Output of the coupled model intercomparison project phase 6 (CMIP6). Journal of the Earth and Space Physics, 46(3), 583-602 (In Farsi).
Zarrin, A., Dadashi-Roudbari, A. (2021a). Projected consecutive dry and wet days in Iran based on CMIP6 bias‐corrected multi‐model ensemble. Journal of the Earth and Space Physics, 47(3), 561-578 (In Farsi).
Zarrin, A., Dadashi-Roudbari, A. (2021b). Projected consecutive dry and wet days in Iran based on CMIP6 bias‐corrected multi‐model ensemble. Journal of the Earth and Space Physics, 47(3), 561-578 (In Farsi).
Zeng, J., Li, J., Lu, X., Wei, Z., Shangguan, W., Zhang, S., ... & Zhang, S. (2022). Assessment of global meteorological, hydrological and agricultural drought under future warming based on CMIP6. Atmospheric and Oceanic Science Letters, 15(1), 100143.
Zhai, J., Mondal, S. K., Fischer, T., Wang, Y., Su, B., Huang, J., ... & Uddin, M. J. (2020). Future drought characteristics through a multi-model ensemble from CMIP6 over South Asia. Atmospheric Research, 246, 105111.
Zhao, T., & Dai, A. (2017). Uncertainties in historical changes and future projections of drought. Part II: model-simulated historical and future drought changes. Climatic Change, 144(3), 535-548.