حل تحلیلی معادله انتقال آلاینده در انواع شبکه رودخانه با لحاظ عبارت منبع گسترده

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی و مدیریت آب، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

10.22059/ijswr.2022.341884.669250

چکیده

در پژوهش حاضر، حل تحلیلی معادله انتقال آلودگی با لحاظ عبارت منبع گسترده و شرط اولیه، برای یک شبکه رودخانه عام در یک دامنه محدود با ضرایب ثابت به‌ازاء شرایط مرزی بالادست و پایین‌دست از نوع دیریکله با روش تبدیل لاپلاس انجام گرفت. وجود عبارت منبع و شرط اولیه، پیچیدگی محاسبات را به‌لحاظ یافتن جواب خصوصی معادله دیفرانسیل معمولی دوچندان می‌کند. به‌منظور ارزیابی حل تحلیلی موجود، دو مثال فرضی ارائه گردید، که در هر کدام، مدل‌سازی بر روی دو نوع شبکه شاخه‌ای و حلقه‌ای با درنظر گرفتن یک منبع آلودگی گسترده انجام گرفت. داده‌های ورودی برای مدل‌سازی هر یک از شبکه‌های رودخانه دلخواه شامل، مقادیر سرعت، ضریب پراکندگی، طول شاخه‌ها، سطح مقطع جریان و غلظت‌های ورودی از مرزها و منبع گسترده می‌باشد. با محاسبه ماتریس‌های انتشار و بیلان جرم لاپلاس‌گرفته شده (با تاثیر منبع گسترده در آن) در شبکه رودخانه براساس ماتریس نحوه اتصال و ماتریس‌ داده‌ها، یک دستگاه معادلات غیرخطی‌ای برحسب متغیر s لاپلاس ایجاد می‌شود، که با حل آن، ماتریس غلظت آلودگی و به‌تبع آن غلظت آلودگی در هر گره با الگوریتم لاپلاس‌گیری وارون عددی محاسبه می‌شود. به‌منظور اعتبارسنجی حل تحلیلی پیشنهادی از حل عددی استفاده شد. نتایج نشان داد که شاخص‌های آماری R2، جذر میانگین مربع خطاها و میانگین خطای مطلق در بهترین حالت به‌ترتیب 86/99%، 0099/0 و 0067/0 کیلوگرم برمترمکعب برای مسیر 1456 و در بدترین حالت به‌ترتیب 20/95%، 0309/0 و 0194/0 کیلوگرم برمترمکعب برای مسیر 23456 شبکه حلقه‌ای بوده و دو حل مذکور انطباق خوبی با یکدیگر داشته و نشان‌دهنده عملکرد مطلوب حل تحلیلی موجود و جایگزینی آن به‌جای حل عددی به‌دلیل دقت بالاتر در شبکه رودخانه می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Analytical solution of pollutant transport equation in different types of river networks considering distributed source term

نویسندگان [English]

  • Mohammad Javad Fardadi Shilsar
  • Mehdi Mazaheri
  • Ja,mal Mohammad Vali Samani
Department of Water Engineering and Management, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
چکیده [English]

In this study, the analytical solution of the pollution transport equation considering distributed source term and initial condition was performed by Laplace transform method for a general river network in a finite domain with constant coefficients for upstream and downstream using Dirichlet boundary conditions. Existence of the source term and initial condition increases the computational complexity to find the particular solution of the ordinary differential equation. To evaluate the existing analytical solution, two hypothetical examples were presented, that in each, modeling was performed on two branch and loop networks types considering a distributed source of pollution. Input data for modeling each of the desired river networks include values of velocity, dispersion coefficient, branch lengths, flow area, and input concentrations from boundaries and distributed sources. By calculating the diffusion and Laplace mass balance matrices (by influencing the distributed source) in the river network based on the connection and data matrix, a nonlinear equations system is created according to the Laplace s variable, which by solving it, the pollution concentration matrix and consequently the pollution concentration in each node is calculated by numerical inverse Laplace algorithm. The numerical solution used to validate the proposed analytical solution. The results showed that the statistical indices of R2, root mean square error, and mean absolute error in the best case were 99.86%, 0.0099, and 0.0067 kg/m3 for 1456 route and in the worst case were 95.20%, 0.0309 and 0.0194 kg/m3 for 23456 route of the loop network, respectively. The results showed that the two proposed solutions are well compatible together, indicating the good performance of the existing analytical solution and its replacement instead of numerical solution due to higher accuracy in the river network.

کلیدواژه‌ها [English]

  • Concentration distribution function
  • Laplace transform method
  • Constant coefficients
  • Mathematical modeling
  • Advection-dispersion-reaction-source equation
Abate, J., Choudhury, G. L., & Whitt, W. (2000). An introduction to numerical transform inversion and its application to probability models. In Computational probability (pp. 257-323). Springer.
Abate, J., & Whitt, W. (2006). A unified framework for numerically inverting Laplace transforms. INFORMS Journal on Computing, 18(4), 408-421.
Amiri, S., Mazaheri, M., & Bavandpouri Gilan, N. (2021). Introducing a new method for calculating the spatial and temporal distribution of pollutants in rivers. International Journal of Environmental Science and Technology, 18(12), 3777-3794.
Bharati, V. K., Singh, V. P., Sanskrityayn, A., & Kumar, N. (2017). Analytical solution of advection-dispersion equation with spatially dependent dispersivity. Journal of Engineering Mechanics, 143(11), 04017126.
Bharati, V. K., Singh, V. P., Sanskrityayn, A., & Kumar, N. (2018). Analytical solutions for solute transport from varying pulse source along porous media flow with spatial dispersivity in fractal & Euclidean framework. European Journal of Mechanics-B/Fluids, 72, 410-421.
Bharati, V. K., Singh, V. P., Sanskrityayn, A., & Kumar, N. (2019). Analytical solution for solute transport from a pulse point source along a medium having concave/convex spatial dispersivity within fractal and Euclidean framework. Journal of Earth System Science, 128(8), 1-19.
Biswal, B., & Marani, M. (2010). Geomorphological origin of recession curves. Geophysical Research Letters, 37(24), 5.
Carr, E. J. (2020). New semi-analytical solutions for advection–dispersion equations in multilayer porous media. Transport in Porous Media, 135(1), 39-58.
Chapra, S. C. (2008). Surface water-quality modeling. Waveland press.
Chen, J.-S., Chen, J.-T., Liu, C.-W., Liang, C.-P., & Lin, C.-W. (2011). Analytical solutions to two-dimensional advection–dispersion equation in cylindrical coordinates in finite domain subject to first-and third-type inlet boundary conditions. Journal of Hydrology, 405(3-4), 522-531.
Clement, T. P. (2001). Generalized solution to multispecies transport equations coupled with a first-order reaction network. Water Resources Research, 37(1), 157-163.
Codeço, C. T. (2001). Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir. BMC infectious diseases, 1(1), 1-14.
Cotta, R. M., Knupp, D. C., & Naveira-Cotta, C. P. (2016). Analytical heat and fluid flow in microchannels and microsystems. Springer.
Deng, X. (2019). Correlations between water quality and the structure and connectivity of the river network in the Southern Jiangsu Plain, Eastern China. Science of the total environment, 664, 583-594.
Diamantini, E., Mallucci, S., & Bellin, A. (2019). A parsimonious transport model of emerging contaminants at the river network scale. Hydrology and Earth System Sciences, 23(1), 573-593.
Edokpayi, J. N., Rogawski, E. T., Kahler, D. M., Hill, C. L., Reynolds, C., Nyathi, E., Smith, J. A., Odiyo, J. O., Samie, A., & Bessong, P. (2018). Challenges to sustainable safe drinking water: a case study of water quality and use across seasons in rural communities in Limpopo province, South Africa. Water, 10(2), 159.
Fardadi Shilsar, M. J., Mazaheri, M., & Mohammad Vali Samani, J. (2022). Analytical solution of the pollution transport equation with variable coefficients in river using the Laplace Transform. Water and Irrigation Management, 11(4), 683-698. (In Farsi)
Fawell, J., & Nieuwenhuijsen, M. J. (2003). Contaminants in drinking waterEnvironmental pollution and health. British medical bulletin, 68(1), 199-208.
Fedi, A., Massabò, M., Paladino, O., & Cianci, R. (2010). A new analytical solution for the 2D advection-dispersion equation in semi-infinite and laterally bounded domain. Applied Mathematical Sciences, 4(75), 3733-3747.
Genuchten, M. T., Leij, F. J., Skaggs, T. H., Toride, N., Bradford, S. A., & Pontedeiro, E. M. (2013a). Exact analytical solutions for contaminant transport in rivers 1. The equilibrium advection-dispersion equation. Journal of Hydrology and Hydromechanics, 61(2), 146.
Genuchten, M. T., Leij, F. J., Skaggs, T. H., Toride, N., Bradford, S. A., & Pontedeiro, E. M. (2013b). Exact analytical solutions for contaminant transport in rivers. 2. Transient storage and decay chain solutions. Journal of Hydrology and Hydromechanics, 61(3), 250-259.
Guerrero, J. P., Pimentel, L. C. G., Skaggs, T., & Van Genuchten, M. T. (2009). Analytical solution of the advection–diffusion transport equation using a change-of-variable and integral transform technique. International Journal of Heat and Mass Transfer, 52(13-14), 3297-3304.
Heaton, L. L., López, E., Maini, P. K., Fricker, M. D., & Jones, N. S. (2012). Advection, diffusion, and delivery over a network. Physical Review E, 86(2), 021905.
Horváth, G., Horváth, I., Almousa, S. A.-D., & Telek, M. (2020). Numerical inverse Laplace transformation using concentrated matrix exponential distributions. Performance Evaluation, 137, 102067.
Horváth, G., Horváth, I., & Telek, M. (2020). High order concentrated matrix-exponential distributions. Stochastic Models, 36(2), 176-192.
Kilic, S. G., & Aral, M. M. (2009). A fugacity based continuous and dynamic fate and transport model for river networks and its application to Altamaha River. Science of the total environment, 407(12), 3855-3866.
Koplik, J., Redner, S., & Wilkinson, D. (1988). Transport and dispersion in random networks with percolation disorder. Physical Review A, 37(7), 2619.
Korn, G. A., & Korn, T. M. (2000). Mathematical handbook for scientists and engineers: definitions, theorems, and formulas for reference and review. Courier Corporation.
Kreyszig, E. (2009). Advanced engineering mathematics, (10th ed.) Wiley.
Leij, F. J., Skaggs, T. H., & Van Genuchten, M. T. (1991). Analytical solutions for solute transport in three‐dimensional semi‐infinite porous media. Water Resources Research, 27(10), 2719-2733.
Leij, F. J., Toride, N., & Van Genuchten, M. T. (1993). Analytical solutions for non-equilibrium solute transport in three-dimensional porous media. Journal of Hydrology, 151(2-4), 193-228.
Leij, F. J., & Van Genuchten, M. T. (2000). Analytical modeling of nonaqueous phase liquid dissolution with Green's functions. Transport in Porous Media, 38(1), 141-166.
Mashhadgarme, N., Mohammadvali Samani, J., & Mazaheri, M. (2013). Analytical Solution of Pollution Transport Equation with Arbitrary Time Pattern of Multiple Point Sources using Green’s Function Method. Journal of Hydraulics, 8(4), 13-25. (In Farsi)
Mashhadgarme, N., Mazaheri, M., & Mohammad Vali Samani, J. (2017). Analytical solutions to one-and two-dimensional Advection-Dispersion-Reaction equation with arbitrary source term time pattern using Green's function method. Sharif Journal of Civil Engineering, 33-2, 77-91. (In Farsi)
Mashhadgarme, N., Mazaheri, M., & Mohammad Vali Samani, J. (2019). An analytical Solution to Bi-dimensional Unsteady Contaminant Transport Equation with Arbitrary Initial and Boundary Conditions. Hydrophysics, 5(1), 111-123. (In Farsi)
Mashhadgarme, N., Mazaheri, M., & Mohammad Vali Samani, J. (2020). An Analytical Solution To Two-Dimensional Unsteady Mass Transfer Equation With Arbitrary Source Term In The River. Sharif Journal of Mechanical Engineering, 36-3, 119-109. (In Farsi)
Mashhadgarme, N., Mazaheri, M., & Mohammad Vali Samani, J. (2021). An Analytical solution to two-dimensional unsteady pollutant transport equation with arbitrary initial condition and source term in the open channels. Journal of the Earth and Space Physics, 47(1), 77-90. (In Farsi)
Massabó, M., Cianci, R., & Paladino, O. (2006). Some analytical solutions for two-dimensional convection–dispersion equation in cylindrical geometry. Environmental Modelling & Software, 21(5), 681-688.
Massabó, M., Cianci, R., & Paladino, O. (2011). An analytical solution of the advection dispersion equation in a bounded domain and its application to laboratory experiments. Journal of Applied Mathematics, 2011(6), 14.
Master, L. L., Flack, S. R., & Stein, B. A. (1998). Rivers of life: critical watersheds for protecting freshwater biodiversity. Nature Conservancy Arlington, Virginia.
Matthews, W. J. (2012). Patterns in freshwater fish ecology. Springer Science & Business Media.
Mazaheri, M., MV Samani, J., & MV Samani, H. (2013). Analytical solution to one-dimensional advection-diffusion equation with several point sources through arbitrary time-dependent emission rate patterns. Journal of Agricultural Science and Technology, 15(6), 1231-1245.
Moranda, A., Cianci, R., & Paladino, O. (2018). Analytical solutions of one-dimensional contaminant transport in soils with source production-decay. Soil Systems, 2(3), 40.
Park, E., & Zhan, H. (2001). Analytical solutions of contaminant transport from finite one-, two-, and three-dimensional sources in a finite-thickness aquifer. Journal of Contaminant Hydrology, 53(1-2), 41-61.
Pascual, M., Bouma, M. J., & Dobson, A. P. (2002). Cholera and climate: revisiting the quantitative evidence. Microbes and infection, 4(2), 237-245.
Ramezani, M., Noori, R., Hooshyaripor, F., Deng, Z. and Sarang, A., (2019). Numerical modelling-based comparison of longitudinal dispersion coefficient formulas for solute transport in rivers. Hydrological Sciences Journal, 64(7), pp.808-819.
Rinaldo, A., Gatto, M., & Rodriguez-Iturbe, I. (2018). River networks as ecological corridors: A coherent ecohydrological perspective. Advances in Water Resources, 112, 27-58.
Rodriguez‐Iturbe, I., Muneepeerakul, R., Bertuzzo, E., Levin, S. A., & Rinaldo, A. (2009). River networks as ecological corridors: A complex systems perspective for integrating hydrologic, geomorphologic, and ecologic dynamics. Water Resources Research, 45(1), 1413.
Sanskrityayn, A., Bharati, V. K., & Kumar, N. (2018). Solute transport due to spatio-temporally dependent dispersion coefficient and velocity: analytical solutions. Journal of Hydrologic Engineering, 23(4), 04018009.
Sanskrityayn, A., Singh, V. P., Bharati, V. K., & Kumar, N. (2018). Analytical solution of two-dimensional advection–dispersion equation with spatio-temporal coefficients for point sources in an infinite medium using Green’s function method. Environmental Fluid Mechanics, 18(3), 739-757.
Sanskrityayn, A., Suk, H., Chen, J.-S., & Park, E. (2021). Generalized Analytical Solutions of The Advection-Dispersion Equation with Variable Flow and Transport Coefficients. Sustainability, 13(14), 7796.
Sanskrityayn, A., Suk, H., & Kumar, N. (2017). Analytical solutions for solute transport in groundwater and riverine flow using Green’s Function Method and pertinent coordinate transformation method. Journal of Hydrology, 547, 517-533.
Srinivasan, V., & Clement, T. (2008a). Analytical solutions for sequentially coupled one-dimensional reactive transport problems–Part I: Mathematical derivations. Advances in Water Resources, 31(2), 203-218.
Srinivasan, V., & Clement, T. (2008b). Analytical solutions for sequentially coupled one-dimensional reactive transport problems–Part II: Special cases, implementation and testing. Advances in Water Resources, 31(2), 219-232.
Stehfest, H. (1970). Algorithm 368: Numerical inversion of Laplace transforms [D5]. Communications of the ACM, 13(1), 47-49.
Talbot, A. (1979). The accurate numerical inversion of Laplace transforms. IMA Journal of Applied Mathematics, 23(1), 97-120.
Yadav, R., & Kumar, L. (2019). Solute transport for pulse type input point source along temporally and spatially dependent flow. Pollution, 5(1), 53-70.
Yang, S., Zhou, H., Zhang, S., & Wang, L. (2019). Analytical solutions of advective–dispersive transport in porous media involving conformable derivative. Applied Mathematics Letters, 92, 85-92.
Zhang, M.-l., Shen, Y.-m., & Guo, Y. (2008). Development and application of a eutrophication water quality model for river networks. Journal of Hydrodynamics, 20(6), 719-726.