شبیه‌سازی پویایی کربن آلی خاک با استفاده از مدل RothC در کاربری‌های مختلف اراضی ایستگاه تحقیقاتی سارال استان کردستان

نوع مقاله : مقاله پژوهشی


1 گروه علوم خاک، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

2 گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

3 گروه مرتعداری، دانشکده منابع طبیعی، دانشگاه کردستان، سنندج، ایران

4 گروه علوم و مهندسی خاک دانشکده کشاورزی دانشگاه کردستان، سنندج، ایران



RothC یکی از موفق­ترین مدل­ها برای شبیه­سازی تأثیر تغییرات آب و هوایی و فعالیت­های مدیریتی در اکوسیستم­های طبیعی در سطح محلی، منطقه­ای و جهانی است. هدف این تحقیق واسنجی و اعتبارسنجی مدل RothC برای تجزیه ‌و تحلیل ذخایر کربن آلی خاک طی سال­های 1990 تا 2020 میلادی (وضعیت کنونی) و تعریف سناریوهای حفظ وضعیت کنونی (سناریو 1)، تغییر اقلیم (سناریو 2)، کوددهی با کود دامی (سناریو 3) و تغییر اقلیم همراه با کوددهی با کود دامی (سناریو 4) تا سال 2100 میلادی در کاربری­های چمنزار، مرتع و اراضی کشاورزی با تناوب‌های زراعی گندم – آیش و گندم – نخود در ایستگاه تحقیقاتی سارال استان کردستان است. مدل با استفاده از داده­های اندازه­گیری شده در سال­های 1389 (مرتع و چمنزار) و 1394 (اراضی کشاورزی) و داده­های آب‌وهوای محلی پارامتریابی و با مطابقت داده­های خروجی مدل با داده­های مشاهده‌شده واسنجی گردید. مدل تغییرات ذخایر کربن آلی خاک را در سناریوهای مختلف کوددهی و تغییر اقلیم به‌خوبی پیش­بینی کرد به‌طوری‌که میانگین جذر مربعات خطا 92/8 درصد و راندمان مدل­سازی 74/0 محاسبه شد. نتایج شبیه­سازی نشان داد تغییرات اقلیمی در کاربری­های موردمطالعه موجب کاهش مقادیر ذخایر کربن آلی خاک در مقایسه با سناریو حفظ وضعیت کنونی تا سال 2100 میلادی خواهد شد. عملیات کوددهی با کود دامی (سناریو 3) بهترین سناریو و کاربری چمنزار پس از اعمال این سناریو با 83/59 تن در هکتار ذخیره کربن آلی خاک تا 2100 به‌عنوان بهترین کاربری در مقادیر ترسیب کربن بود. بیشترین مقدار نرخ ذخیره کربن آلی و تغییرات ترسیب کربن آلی طی 80 سال آینده در کاربری مرتع به ترتیب با 9/32 درصد و 16/0 تن در هکتار (سناریو 3) و کمترین در اراضی کشاورزی با تناوب زراعی گندم – آیش به ترتیب با 32- درصد و 11/0- تن در هکتار (سناریو 2) برآورد شد.


عنوان مقاله [English]

Simulating soil organic carbon dynamics using RothC in grasslands range and croplands Saral Research Center Kurdistan Province

نویسندگان [English]

  • Pouria Shahsavari 1
  • Mohammad Amir Delavar 2
  • Parviz Karami 3
  • Kamal Nabiollahi 4
1 Department of soil science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
2 Department of Soil Science and Engineering Faculty of Agriculture, University of Zanjan, Zanjan, Iran
3 Rangeland Science, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran
4 Department of Soil Science and Engineering Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
چکیده [English]

RothC is among the most successful models in terms of simulating the impacts of climate change and management activities in natural ecosystems on local and global scales. The current research was carried out to assess and validate RothC in studying SOC content from 1990 to 2020 and defining the scenarios of maintaining the current situations (scenario 1), climate change (scenario 2), manure fertilizing till 2100 (scenario 3), and climate change with manure fertilizing till 2100 (scenario 4) in grasslands, range, and croplands in Saral Research Center, Kurdistan Province, under rotations of wheat-uncultivation and wheat-pea. The parameters of the model were determined by using the measured data from the soils sampled at two years (2018 and 2019) from Saral Research Center and the local weather data, Next, the model was validated by comparison of the predicted values with the measured SOC data. Assessment of the measured and simulated data through validation for different land uses revealed that RothC could satisfactorily predict the changes in SOC contents under different fertilizing and climate change scenarios so that root mean square error (RMSE) and the simulation efficiency were calculated as 8.92% and 74.0%, respectively. The simulation results indicated that compared to scenario1, climate change in the studied land uses will cause a decrease in SOC contents till 2100. Manure fertilizing (scenario3) would be the best scenario so that by using this strategy the grassland, with 59.83 ton SOC per hectare until the end of the current century. According to the results predicted by the model, the highest SOCrate (32.9%) and the most change in SOC sequestration (ΔSOCs) (0.16 t/h) during the next 80 years were calculated in the range under scenario 3; whereas the lowest values (-32.0% and -0.11 t/h, respectively), were achieved in croplands under rotations of wheat-uncultivation under scenario2.

کلیدواژه‌ها [English]

  • Carbon sequestration
  • Saral
  • Management scenarios
  • RothC
Abdolahi, A., Nemati, A., Valizadeh, G. (2014). Study on effects of different crop rotations based on wheat on soil physicochemical properties and economical performance in dryland condition of Kermanshah. Iranian Dryland Agronomy Journal, 3(2), 161-171. (In Persian).
Agricultural Research, Education and Extension Organization (AREEO), 2016. Saral Research Station. Available at: https://kurdistan.areeo.ac.ir/fa-IR/kurdistan.areeo.ac/26801.
Ajami, M., Heidari, A., Khormali, F., Gorji, M., Ayoubi, S. (2020). Effect of Topography Indices and Soil Characteristics on Rainfed Wheat Yield in Loess Lands of Toshan Area, Northern Iran. Iranian Journal of Soil and Water Research, 51(1), 93-105. (In Persian).
Amari, P. & Kashmiri, F. (1991). Detailed Soil Studies and Land Classification for Irrigation and Demolition of Kharkeh Research Station (Saral), Kurdistan Province, Soil and Water Research Institute, Journal No. 837, p.131. (In Persian).
Ayoubi, S., Mokhtari, J., Mosaddeghi, M. R., & Zeraatpisheh, M. (2018). Erodibility of calcareous soils as influenced by land use and intrinsic soil properties in a semiarid region of central Iran. Environmental monitoring and assessment190(4), 1-12.
Azad, B., Afzali, S. (2019). Evaluation of Two Soil Carbon Models Performance Using Measured Data in Semi-arid Rangelands of Bajgah, Fars Province. Iranian Journal of Soil and Water Research, 50(4), 819-835.  (In Persian).
Baldock, J. A. (2007). Composition and cycling of organic carbon in soil. In Nutrient cycling in terrestrial ecosystems (pp. 1-35). Springer, Berlin, Heidelberg.
Barančíková, G., Halas, J., Guttekova, M., Makovnikova, J., Novakova, M., Skalský, R., & Tarasovičová, Z. (2010). Application of RothC model to predict soil organic carbon stock on agricultural soils of Slovakia. Soil and Water Research5(1), 1-9.
Bayer, C., Martin-Neto, L., Mielniczuk, J., Dieckow, J., & Amado, T. J. (2006). C and N stocks and the role of molecular recalcitrance and organomineral interaction in stabilizing soil organic matter in a subtropical Acrisol managed under no-tillage. Geoderma133(3-4), 258-268.
Bazargan, K., Rezaei, H., Davatgar, N., Asadi Rahmani, H., Moshiri, F., Shahbazi, K., Davoodi, M.H., Saadat, S., Balali M.R., Ghalebi, S. & Fallah, A., (2015). Exploitation of Iranian soil and water resources. Soil and Water Research Institute. 1:34-37. (In Persian).
Blake, G. R., & Hartge, K. H. (1986). Bulk density. Methods of soil analysis: Part 1 Physical and mineralogical methods, 5, 363-375.
Bleuler, M., Farina, R., Francaviglia, R., di Bene, C., Napoli, R., & Marchetti, A. (2017). Modelling the impacts of different carbon sources on the soil organic carbon stock and CO2 emissions in the Foggia province (Southern Italy). Agricultural Systems157, 258-268.
Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils. Agronomy journal54(5), 464-465.
Carter, M. R., & Gregorich, E. G. (2007). Soil sampling and methods of analysis. CRC press.
Celik, I. (2005). Land-use effects on organic matter and physical properties of soil in a southern Mediterranean highland of Turkey. Soil and Tillage research83(2), 270-277.
Chaves e Carvalho, S. D. P., & de Lima, M. P. (2015). Database approach to calibrate growth and yield models in forestry production systems. Advances in Forestry Science2(3), 69-72.
Chen, S., Wang, W., Xu, W., Wang, Y., Wan, H., Chen, D., ... & Bai, Y. (2018). Plant diversity enhances productivity and soil carbon storage. Proceedings of the National Academy of Sciences115(16), 4027-4032.
Coleman, K., & Jenkinson, D. S. (1996). RothC-26.3-A Model for the turnover of carbon in soil. In Evaluation of soil organic matter models (pp. 237-246). Springer, Berlin, Heidelberg.
Courtney, R. G., & Mullen, G. J. (2008). Soil quality and barley growth as influenced by the land application of two compost types. Bioresource Technology99(8), 2913-2918.
Cui, X., Wang, Y., Niu, H., Wu, J., Wang, S., Schnug, E., ... & Tang, Y. (2005). Effect of long-term grazing on soil organic carbon content in semiarid steppes in Inner Mongolia. Ecological Research20(5), 519-527.
De Assis, C. P., de Oliveira, T. S., da Nóbrega Dantas, J. D. A., & de Sá Mendonça, E. (2010). Organic matter and phosphorus fractions in irrigated agroecosystems in a semi-arid region of Northeastern Brazil. Agriculture, Ecosystems & Environment138(1-2), 74-82.
Dechow, R. Franko, U. Kätterer, T. and Kolbe, H., 2019. Evaluation of the RothC model as a prognostic tool for the prediction of SOC trends in response to management practices on arable land. Geoderma. 337: 463-478.
Derner, J. D., & Schuman, G. E. (2007). Carbon sequestration and rangelands: a synthesis of land management and precipitation effects. Journal of soil and water conservation62(2), 77-85.
Fallahi, J., Rezvani Moghaddam, P., Nasiri Mahallati, M. & Behdani, M.A. (2013). Validation of RothC Model for Evaluation of Carbon Sequestration in a Restorated Ecosystem under Two Different Climatic Scenarios. Journal of Water and Soil, 27(3), 668-658. (In Persian).
Falloon, P. (1998). Estimating the size of the inert organic matter pool from total soil organic carbon content for use in the Rothamsted carbon model. Soil Biol. Biochem.30, 1207-1211.
Falloon, P., & Smith, P. (2002). Simulating SOC changes in long‐term experiments with RothC and CENTURY: model evaluation for a regional scale application. Soil use and management18(2), 101-111.
Frasti, M., & Karimi, M. (2013). Comparison of different methods for estimating evapotranspiration of reference plant under different climatic conditions. The 1st National Conference on Natural Resources Management. Gonbad Kavous University.
Farina, R., Coleman, K., & Whitmore, A. P. (2013). Modification of the RothC model for simulations of soil organic C dynamics in dryland regions. Geoderma200, 18-30.
Francaviglia, R., Di Bene, C., Farina, R., & Salvati, L. (2017). Soil organic carbon sequestration and tillage systems in the Mediterranean Basin: a data mining approach. Nutrient Cycling in Agroecosystems107(1), 125-137.
Fu, C., Chen, Z., Wang, G., Yu, X., & Yu, G. (2021). A comprehensive framework for evaluating the impact of land use change and management on soil organic carbon stocks in global drylands. Current Opinion in Environmental Sustainability48, 103-109.
Geissen, V., Sánchez-Hernández, R., Kampichler, C., Ramos-Reyes, R., Sepulveda-Lozada, A., Ochoa-Goana, S., ... & Hernández-Daumas, S. (2009). Effects of land-use change on some properties of tropical soils—an example from Southeast Mexico. Geoderma151(3-4), 87-97.
Guo, L. B., & Gifford, R. M. (2002). Soil carbon stocks and land use change: a meta analysis. Global change biology8(4), 345-360.
Guo, L., Falloon, P., Coleman, K., Zhou, B., Li, Y., Lin, E., & Zhang, F. (2007). Application of the RothC model to the results of long‐term experiments on typical upland soils in northern China. Soil use and management23(1), 63-70.
Halvorson, A. D., Peterson, G. A., & Reule, C. A. (2002). Tillage system and crop rotation effects on dryland crop yields and soil carbon in the central Great Plains.
He, W., Grant, B. B., Jing, Q., Lemke, R., Luce, M. S., Jiang, R., ... & Smith, W. N. (2021). Measuring and modeling soil carbon sequestration under diverse cropping systems in the semiarid prairies of western Canada. Journal of Cleaner Production328, 129614.
Herbst, M., Welp, G., Macdonald, A., Jate, M., Hädicke, A., Scherer, H., ... & Vanderborght, J. (2018). Correspondence of measured soil carbon fractions and RothC pools for equilibrium and non-equilibrium states. Geoderma314, 37-46.
Hobley, E., Baldock, J., Hua, Q., & Wilson, B. (2017). Land‐use contrasts reveal instability of subsoil organic carbon. Global change biology23(2), 955-965.
Jafarian, Z., & Kavian, A. (2013). Effects of land-use change on soil organic carbon and nitrogen. Communications in soil science and plant analysis44(1-4), 339-346.
Jangid, K., Williams, M. A., Franzluebbers, A. J., Sanderlin, J. S., Reeves, J. H., Jenkins, M. B., ... & Whitman, W. B. (2008). Relative impacts of land-use, management intensity and fertilization upon soil microbial community structure in agricultural systems. Soil Biology and Biochemistry40(11), 2843-2853.
Jebari, A., Prado, A. D., Pardo, G., Rodriguez Martin, J. A., & Álvaro-Fuentes, J. (2018). Modeling regional effects of climate change on soil organic carbon in Spain.
Jobbágy, E. G., & Jackson, R. B. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological applications10(2), 423-436.
Karami, P., (2010).Simulation of rangeland ecosystems performance in west of Iran using CENTURY model (Case study: Saral region of Kurdistan). Ph.D Thesis in Rangeland Science, Gorgan University of Agricultural Sciences and Natural Resources.
Kennedy, I. R., Choudhury, A. T. M. A., Kecskés, M. L., Roughley, R. J., & Hien, N. T. (2005). Non-symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? In Biological Nitrogen Fixation, Sustainable Agriculture and the Environment (pp. 271-272). Springer, Dordrecht.
Khaleghi, S., Bazazan, F. & Madani, S. (2015). The Effect of Climate Change on Agricultural Production and on the Economy of Iran) Social Accounting Matrix Approach). Agricultural Economics Research. 7, 113-135.
Khalili Aghdam, N., Masaedi, A., Soltani, A. & Kamkar, B. (2012). Evaluation of the ability of LARS-WG model in predicting some atmospheric parameters of Sanandaj. Journal of Water and Soil Conservation Research, 19(4), 85-102. (In Persian).
Köchy, M., Don, A., van der Molen, M. K., & Freibauer, A. (2015). Global distribution of soil organic carbon–Part 2: Certainty of changes related to land use and climate. Soil1(1), 367-380.
Lal, R. (2001). Potential of desertification control to sequester carbon and mitigate the greenhouse effect. Climatic change51(1), 35-72.
Li Liu, D., Chan, K. Y., Conyers, M. K., Li, G., & Poile, G. J. (2011). Simulation of soil organic carbon dynamics under different pasture managements using the RothC carbon model. Geoderma165(1), 69-77.
Liu, D., Huang, Y., An, S., Sun, H., Bhople, P., & Chen, Z. (2018). Soil physicochemical and microbial characteristics of contrasting land-use types along soil depth gradients. Catena162, 345-353.
Liu, M. Y., Chang, Q. R., Qi, Y. B., & Sun, N. (2010). Soil organic carbon and particulate organic carbon under different land use types on the Loess Plateau. Journal of Natural Resources25(2), 218-226.
Liu, Y., & Li, Y. (2019). Synergy and trade-off between carbon sequestration and soil water balance: impact of revegetation choices. Environmental Earth Sciences78(23), 1-10.
Lizaga, I., Quijano, L., Gaspar, L., Ramos, M. C., & Navas, A. (2019). Linking land use changes to variation in soil properties in a Mediterranean mountain agroecosystem. Catena172, 516-527.
Mahanta, D., Rai, R. K., Mishra, S. D., Raja, A., Purakayastha, T. J., & Varghese, E. (2014). Influence of phosphorus and biofertilizers on soybean and wheat root growth and properties. Field Crops Research166, 1-9.
McSherry, M. E., & Ritchie, M. E. (2013). Effects of grazing on grassland soil carbon: a global review. Global change biology19(5), 1347-1357.
Mehmandoost, F., Owliaie, H. R., Adhami, E., & Naghiha, R. (2018). Effect of land use change on some physicochemical and biological properties of the soils of Servak plain, Yasouj region. Journal of Water and Soil32(3). (In Persian).
Mesfin, S., Gebresamuel, G., Haile, M., & Zenebe, A. (2021). Modelling spatial and temporal soil organic carbon dynamics under climate and land management change scenarios, northern Ethiopia. European Journal of Soil Science72(3), 1298-1311.
Mondini, C., Coleman, K., & Whitmore, A. P. (2012). Spatially explicit modelling of changes in soil organic C in agricultural soils in Italy, 2001–2100: Potential for compost amendment. Agriculture, ecosystems & environment153, 24-32.
Moradi, M., Soleymanifard, A., Naseri, R., Ghasemi, M., & Abromand, K. (2016). The changes of agronomic traits and harvest index of wheat under the effect of manure and plant growth promotion bacteria at different levels of nitrogen. Crop physiology journal7(28), 73-90.
Nabiollahi, K. (2005). Evolution of clay minerals and their relationship with different forms of potassium in the soils of Kharkeh research station in Kurdistan province. Master Thesis in Soil Science, Gorgan University of Agricultural Sciences and Natural Resources. (In Persian).
Nautiyal, C. S., Chauhan, P. S., & Bhatia, C. R. (2010). Changes in soil physico-chemical properties and microbial functional diversity due to 14 years of conversion of grassland to organic agriculture in semi-arid agroecosystem. Soil and Tillage Research109(2), 55-60.
Nelson, R. E. (1982). Carbonate and gypsum. Methods of soil analysis: Part 2; Chemical and microbiological properties. Winsconsin, US: American Society of Agronomy. 181-197.
Nemati, A., Rafieiolhossaini, M., Danesh-shahraki, A. (2017). The effect of bacterial inoculation and cow manure on physiological indices, grain yield and yield components of chickpea (Cicer arientum) under drought stress conditions. Environmental Stresses in Crop Sciences, 9(4), 339-351. (In Persian).
Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., & Smith, P. (2016). Climate-smart soils. Nature532(7597), 49-57.
Poeplau, C., Don, A., Vesterdal, L., Leifeld, J., Van Wesemael, B. A. S., Schumacher, J., & Gensior, A. (2011). Temporal dynamics of soil organic carbon after land‐use change in the temperate zone–carbon response functions as a model approach. Global change biology17(7), 2415-2427.
Presley, D. R., Ransom, M. D., Kluitenberg, G. J., & Finnell, P. R. (2004). Effects of thirty years of irrigation on the genesis and morphology of two semiarid soils in Kansas.
Qiu, X., Peng, D., Wang, H., Wang, Z., & Cheng, S. (2019). Minimum data set for evaluation of stand density effects on soil quality in Larix principis-rupprechtii plantations in North China. Ecological Indicators103, 236-247.
Rasuli, A., Rezaei-Banafsheh, M., & Ghermezcheshmeh, B. (2014). Investigation impact of morpho-climatic parameters on aaccuracy of LARS-WG model. Iranian Journal of Watershed Management Science and Engineering8(24), 9-24. (In Persian).
Riahi, M. R., Vahabzadeh, G., & Raei, R. (2016). The role of land use change on some soil physicochemical properties (case study: watershed basin of Keyasar Galooga). Water and Soil Science26(1-1), 159-171. (In Persian).
Romanenkov, V., Belichenko, M., Petrova, A., Raskatova, T., Jahn, G., & Krasilnikov, P. (2019). Soil organic carbon dynamics in long-term experiments with mineral and organic fertilizers in Russia. Geoderma Regional17, e00221.
Roudgarmi, P., and Amozadeh, M. (2019). Review of State Laws and Regulations on Forests and Rangelands. Land Management Journal, 6(2), 153-167. (In Persian).
Rouhi, A., Kanoni, H., & Sedri, M.H. (2016). Food Security Promotion Project Iran- ICARDA. Saral Research Station of Kurdistan Province, Agricultural Research, Education and Extension Organization. (In Persian).
Salahi, B., Goudarzi, M., & Hosseini, S. A. (2017). Prediction of the Climate Parameters in the Urmia Lake Basin during 2011-2030. Iranian Journal of Watershed Management Science and Engineering11(37), 47-56. (In Persian).
Sarto, M. V., Borges, W. L., Sarto, J. R., Rice, C. W., & Rosolem, C. A. (2020). Deep soil carbon stock, origin, and root interaction in a tropical integrated crop–livestock system. Agroforestry Systems94(5), 1865-1877.
Singh, A. K., Rai, A., & Singh, N. (2016). Effect of long term land use systems on fractions of glomalin and soil organic carbon in the Indo-Gangetic plain. Geoderma277, 41-50.
Singh, P., Singh, G., Sodhi, G. P. S., & Sharma, S. (2021). Energy optimization in wheat establishment following rice residue management with Happy Seeder technology for reduced carbon footprints in north-western India. Energy230, 120680.
Singh, S. K., Pandey, C. B., Sidhu, G. S., Sarkar, D., & Sagar, R. (2011). Concentration and stock of carbon in the soils affected by land uses and climates in the western Himalaya, India. Catena87(1), 78-89.
Smith, P., Smith, J. U., Franko, U., Kuka, K., Romanenkov, V. A., Shevtsova, L. K., ... & Lisovoi, N. V. (2007). Changes in mineral soil organic carbon stocks in the croplands of European Russia and the Ukraine, 1990–2070; comparison of three models and implications for climate mitigation. Regional Environmental Change7(2), 105-119.
Smith, P., Smith, J. U., Powlson, D. S., McGill, W. B., Arah, J. R. M., Chertov, O. G., ... & Whitmore, A. P. (1997). A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma81(1-2), 153-225.
Soil Survey Staff. 2014. Keys to Soil Taxonomy, 12th Edn Washington.DC: Natural Resources Conservation Service, United States Department of Agriculture.
Soleimani, A., Hosseini, S. M., Bavani, A. R. M., Jafari, M., & Francaviglia, R. (2017). Simulating soil organic carbon stock as affected by land cover change and climate change, Hyrcanian forests (northern Iran). Science of the total environment599, 1646-1657.
Tan, W. F., Zhang, R., Cao, H., Huang, C. Q., Yang, Q. K., Wang, M. K., & Koopal, L. K. (2014). Soil inorganic carbon stock under different soil types and land uses on the Loess Plateau region of China. Catena121, 22-30.
Tong, J., Hu, J., Lu, Z., Sun, H., & Yang, X. (2019). The impact of land use and cover change on soil organic carbon and total nitrogen storage in the Heihe River Basin: A meta-analysis. Journal of Geographical Sciences29(9), 1578-1594.
Trumbore, S. E., Davidson, E. A., Barbosa de Camargo, P., Nepstad, D. C., & Martinelli, L. A. (1995). Belowground cycling of carbon in forests and pastures of Eastern Amazonia. Global Biogeochemical Cycles9(4), 515-528.
Van Leeuwen, J. P., Djukic, I., Bloem, J., Lehtinen, T., Hemerik, L., De Ruiter, P. C., & Lair, G. J. (2017). Effects of land use on soil microbial biomass, activity and community structure at different soil depths in the Danube floodplain. European journal of soil biology79, 14-20.
Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science37(1), 29-38.
Wang, D., Wu, G. L., Zhu, Y. J., & Shi, Z. H. (2014). Grazing exclusion effects on above-and below-ground C and N pools of typical grassland on the Loess Plateau (China). Catena123, 113-120.
Waters, C. M., Orgill, S. E., Melville, G. J., Toole, I. D., & Smith, W. J. (2017). Management of grazing intensity in the semi‐arid rangelands of Southern Australia: Effects on soil and biodiversity. Land Degradation & Development28(4), 1363-1375.
Wilford, J., De Caritat, P., & Bui, E. (2015). Modelling the abundance of soil calcium carbonate across Australia using geochemical survey data and environmental predictors. Geoderma259, 81-92.
Yao, Z., Zhang, D., Yao, P., Zhao, N., Liu, N., Zhai, B., ... & Gao, Y. (2017). Coupling life-cycle assessment and the RothC model to estimate the carbon footprint of green manure-based wheat production in China. Science of the Total Environment607, 433-442.
Yazdanparast, P. (2008). Investigating the Relationship between Vegetation Factors and Habitat Characteristics (Adafic and Physiographic), A Case Study of Saral Research Station in Kurdistan Province. Ms.C Thesis in Range Management, Islamic Azad University, Science and Research Branch.
Yokozawa, M., Shirato, Y., Sakamoto, T., Yonemura, S., Nakai, M., & Ohkura, T. (2010). Use of the RothC model to estimate the carbon sequestration potential of organic matter application in Japanese arable soils. Soil Science & Plant Nutrition56(1), 168-176.
You, M., Li, L. J., Tian, Q., He, P., He, G., Hao, X. X., & Horwath, W. R. (2020). Residue decomposition and priming of soil organic carbon following different NPK fertilizer histories. Soil Science Society of America Journal84(6), 1898-1909.
You, M., Zhu-Barker, X., Hao, X. X., & Li, L. J. (2021). Profile distribution of soil organic carbon and its isotopic value following long term land-use changes. Catena207, 105623.
Zimmermann, M., Leifeld, J., Schmidt, M. W. I., Smith, P., & Fuhrer, J. (2007). Measured soil organic matter fractions can be related to pools in the RothC model. European Journal of Soil Science58(3), 658-667.
Zohrevandi, H., Khorshid Dost, A., and Sari saraf, B. (2020). Prediction of Climate Change in Western of Iran using Downscaling of HadCM3 Model under Different Scenarios. Journal of Spatial Analysis Environmental Hazarts, 7(1), 49-64. (In Persian).