ارزیابی کمّی پاسخ گیاه کاملینا (Camelina sativa L.) به تنش شوری در مراحل آغازین رشد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه آبیاری و زهکشی-دانشکده کشاورزی- دانشگاه تربیت مدرس-تهران-ایران

2 گروه زراعت، دانشکده کشاورزی دانشگاه تربیت مدرس، تهران، ایران

10.22059/ijswr.2022.335338.669154

چکیده

جوانه­زنی نقشی حیاتی در استقرار گیاه و عملکرد آن دارد. بیشتر گیاهان دانه روغنی در مرحله­ی جوانه‌زنی به شوری حساس هستند و نمی‌توان آن‌ها را با آب شور آبیاری کرد. کاملینا گیاهی دانه روغنی است که هرچند به کم آبی مقاوم بوده لیکن مقاومت آن به شوری باید ارزیابی شود. برای بررسی کمّی پاسخ کاملینا به شوری در مرحله‌ی جوانه‌زنی، آزمایشی در قالب طرح کاملاً تصادفی شامل 17 سطح شوری 85/0، 2، 4، 6، 8، 10، 12، 14، 16، 18، 20، 22، 24، 26، 28، 30، 32 dS/m با سه تکرار انجام شد. پارامترهای جوانه­زنی با استفاده از بسته SeedCalc در نرم‌افزار R محاسبه و از MATLAB برای کد نویسی و برازش مدل­ها استفاده شد. بهینه‌سازی با تغییر مکرر پارامتر­های مدل بر پایه­ی کاهش RMSE و حداقل مربعات خطا انجام شد. سپس مدل­های شوری ماس-هافمن (MH)، ون گنوختن-هافمن (HVG)، دیرکسن-آگوستین (DA) و همایی (H) با هم مقایسه گردیدند. تجزیه ‌و تحلیل داده­ها با استفاده از نرم‌افزار SAS و مقایسه میانگین‌ها به روش LSD انجام شد. آستانه­ی کاهش شاخص­های سرعت جوانه­زنی (GSI)، بنیه بذر (SV)، بنیه بذر SeedCalc (SV-S) به ترتیب 2، 12 و 12 dS/m و شیب کاهش آن­ها 4/2، 7/7 و 7/1 به دست آمد. بر پایِۀ EC* و شیب کاهش شاخص  GSI و SV-S، نتیجه­گیری گردید که کاملینا به شوری بسیار مقاوم بوده و قابلیت استقرار سریع و تولید گیاهچه­ی قوی در سطوح بالای شوری را دارد. بررسی آماره­های کارآیی مدل‌ها نشان داد که مدل­های غیرخطی عملکرد بهتری دارند. بهترین عملکرد مدل­ها توسط مدل­های HVG و H حاصل شد. شاخص­های جوانه­زنی با افزایش سطوح شوری کاهش یافته و کاهش GSI به کاهش جذب آب در بذر­ها مربوط است. هر چه بنیه بذر بیشتر باشد، GSI و رشد گیاهچه بیشتر و MGT کمتر می‌شود. بنابراین می‌توان نتیجه گرفت که کاملینا می‌تواند جایگزینی مناسب برای گیاهان دانه روغنی آب‌بر در مناطق نیمه‌خشک می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Quantitative Assessment of Camelina (Camelina sativa L.) Response to Salinity at Early Growth Stage

نویسندگان [English]

  • Mehdi Homaee 1
  • mansure bayram 1
  • ali mokhtasibidgoli 2
1 Department of Irrigation and Drainage, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
2 Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
چکیده [English]

Germination plays a vital role in crop establishment and its yield. Most oilseeds are sensitive to salinity at germination, so cannot be irrigated with saline water. Although camelina is considered as a tolerant crop to water stress, but its tolerance to salinity must be investigated. To quantitatively evaluate camelina response to salinity at germination stage, an experiment with a completely randomized design was conducted including 17 water salinity levels of 0.85, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32 dS m-1, each with three replicates. Germination indicators were calculated using the SeedCalc package in R software and MATLAB. The optimization procedure was carried out with frequent changes in the model parameters based on reduced RMSE and minimizing least squares error. Then, parameters of salinity models including Maas-Hoffman, van Genuchten-Hoffman, Dirksen-Augustijn and Homaee et al. were derived and compared. The obtained threshold values of germination rate (GSI), seed vigor (SV), SeedCalc seed vigor (SV-S) were 2, 12 and 12 dS m-1, respectively; The corresponding reduction slope for these variables were 2.4, 7.7 and 1.7%, respectively. Based on the obtained EC* and the slope, it was concluded that camelina is very tolerant to salinity at this growth stage. So that, it can be established quickly and produce strong seedlings at very high salinity levels. Further analyses of model performance statistics indicated that the examined nonlinear models provide better performance. Best performance of fitted models was obtained by HVG and H models, respectively. Germination indices were decreased by increasing the salinity levels, a lower GSI was associated with decreased seeds water uptake. The higher the seed vigor, the higher the GSI and seedling growth, as well as the lower MGT. Overall, camelina can be considered as a suitable alternative for oilseed cultivation in semi-arid regions.

کلیدواژه‌ها [English]

  • camelina
  • Germination rate
  • modeling
  • oilseed
Abdul‐Baki, A. A., & Anderson, J. D. (1973). Vigor determination in soybean seed by multiple criteria 1. Crop science13(6), 630-633.
Abogadallah, G. M., & Quick, W. P. (2009). Vegetative salt tolerance of barnyard grass mutants selected for salt tolerant germination. Acta physiologiae plantarum31(4), 815-824
Al-shareef, N. O., & Tester, M. (2019). Plant Salinity Tolerance. eLS; John Wiley & Sons Ltd.: Chichester, UK. pp. 1–6.
Alencar, N. L., Gadelha, C. G., Gallão, M. I., Dolder, M. A., Prisco, J. T., & Gomes-Filho, E. (2015). Ultrastructural and biochemical changes induced by salt stress in Jatropha curcas seeds during germination and seedling development. Functional Plant Biology42(9), 865-874.
Amirmoradi, S., & Feizi, H. (2017). Can mean germination time predict seed vigor of canola (Brassica napus L.) seed lots?. Acta agrobotanica70(4).
Anonymous. )2014(. International rules for seed testing. Seed Science and Technology, 24: 1- 335 (supplement). International Seed Testing Association (ISTA), Zurich, Switzerland. (Handbook)
Ashkan, A., & Jalal, M. (2013). Effects of salinity stress on seed germination and seedling vigor indices of two halophytic plant species (Agropyron elongatum and A. pectiniforme). International Journal of Agriculture and Crop Sciences (IJACS)5(22), 2669-2676.
Ayaz, F. A., Kadioglu, A. S. İ. M., & Turgut, R. (2000). Water stress effects on the content of low molecular weight carbohydrates and phenolic acids in Ctenanthe setosa (Rosc.) Eichler. Canadian Journal of Plant Science80(2), 373-378.
Bandeoğlu, E., Eyidoğan, F., Yücel, M., & Öktem, H. A. (2004). Antioxidant responses of shoots and roots of lentil to NaCl-salinity stress. Plant Growth Regulation42(1), 69-77.
Baalbaki, R., Elias, S., Marcos-Filho, J. & McDonald, M.B. (2009). Seed vigor testing handbook. AOSA, Ithaca, NY, USA. (Contribution to the Handbook on Seed Testing, 32)
Benincasa, M. M. P. (2003). Análise de crescimento de plantas: noções básicas, Jaboticabal, 42 p. SP: FUNEP.
BİLGİLİ, U., Carpici, E. B., AŞIK, B. B., & Celik, N. (2011). Root and shoot response of common vetch (Vicia sativa L.), forage pea (Pisum sativum L.) and canola (Brassica napus L.) to salt stress during early se. Turkish Journal of Field Crops16(1), 33-38.
Bybordi, A., & Tabatabaei, J. (2009). Effect of salinity stress on germination and seedling properties in canola cultivars (Brassica napus L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca37(2), 71-76.
Bybordi, A. (2010). The influence of salt stress on seed germination, growth and yield of canola cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca38(1), 128-133.
Dai, J., Huff, D. R., & Schlossberg, M. J. (2009). Salinity effects on seed germination and vegetative growth of greens‐type Poa annua relative to other cool‐season turfgrass species. Crop science49(2), 696-703.
Datta, K. S., & Dayal, J. (1991). Studies on germination and early seedling growth of gram (Cicer arietinum L.) as affected by salinity. New Trends in Plant Physiology1, 273-276.
Debez, A., Hamed, K. B., Grignon, C., & Abdelly, C. (2004). Salinity effects on germination, growth, and seed production of the halophyte Cakile maritima. Plant and soil262(1), 179-189.
Dirksen, C., & Augustijn, D. C. M. (1988). Root water uptake function for nonuniform pressure and osmotic potentials. In Agronomy Abstracts (p. 182).
Dkhil, B. B., & Denden, M. (2010). Salt stress induced changes in germination, sugars, starch and enzyme of carbohydrate metabolism in Abelmoschus esculentus (L.) Moench seeds. African Journal of Agricultural Research5(12), 1412-1418.
FAO. (2021). Global Symposium on Salt-Affected Soils (GSAS21). Food and Agriculture Organization of the United  Nations Rome, Italy
FAO. (2015). Status of the World’s Soil Resources (SWSR)—Main Report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils. Rome, FAO, 650 p.
Feddes, R.A. (1982). Simulation of field water use and crop yield (pp. 194-209). Pudoc. Wageningen.The Netherlands Saline water in supplemental irrigation of wheat and barley under rainfedagriculture. Agricultural Water Management, vol.78, pp.122-127.
Gama, G. F. V., de Oliveira, R. M., Pinheiro, D. T., da Silva, L. J., & dos Santos Dias, D. C. F. (2021). Yield and physiological quality of wheat seeds produced under different irrigation depths and leaf Silicon. Semina: Ciências Agrárias42(4), 2233-2252.
Gholizadeh, F., Mirzaghaderi, G., Danish, S., Farsi, M., & Marashi, S. H. (2021). Evaluation of morphological traits of wheat varieties at germination stage under salinity stress. Plos one16(11), e0258703.
Gulzar, S., & Khan, M. A. (2001). Seed germination of a halophytic grass Aeluropus lagopoides. Annals of Botany87(3), 319-324.
Hajivand Ghassem‌abadi, F., Eisvand, H., & Akbarpour, O. A. (2018). Evaluation of salinity tolerance of different clover species at germination and seedling stages. Iranian Journal of Plant Physiology8(3), 2469-2477.
Homaee, M., Dirksen, C., & Feddes, R. A., (2002). Simulation of root water uptake: I. Non-uniform transient salinity stress using different reduction functions. Agricultural water management57(2), 111-126.
Ibrahim, F. M., & El Habbasha, S. F. (2015). Chemical composition, medicinal impacts and cultivation of camelina (Camelina sativa). International Journal of Pharm Tech Research8, 114-122.
Islam, M. N., Islam, A., & Biswas, J. C. (2017). Effect of gypsum on electrical conductivity and sodium concentration in salt affected paddy soil. International Journal of Agricultural Papers2(1), 19-23.
ISTA. (2015). The germination test. In: International rules for seed testing. Zurich, Switzerland: International Seed Testing Association.
Jamil, M., & Rha, E. S. (2004). The effect of salinity (NaCl) on the germination and seedling of sugar beet (Beta vulgaris L.) and cabbage (Brassica oleracea L.). Plant resources7(3), 226-232.
Kandil, A. A., Sharief, A. E., Abido, W. A. E., & Ibrahim, M. M. (2012). Effect of salinity on seed germination and seedling characters of some forage sorghum cultivars. International Journal of Agriculture Sciences4(7), 306.
Khodarahmpour, Z., Ifar, M., & Motamedi, M. (2012). Effects of NaCl salinity on maize (Zea mays L.) at germination and early seedling stage. African Journal of Biotechnology, 11(2), 298-304.
Koushafar, M., Khoshgoftarmanesh, A.H., Moezzi, A. and Mobli, M. (2011). Effect of dynamic unequal distribution of salts in the root environment on performance and Crop Per Drop (CPD) of hydroponic-grown tomato. Scientia horticulturae, 131, pp.1-5.
Labouriau, L. G. (1983). Uma nova linha de pesquisa na fisiologia da germinação das sementes. In Anais do XXXIV Congresso Nacional de Botânica. SBB, Porto Alegre (pp. 11-50).
Li, Y., & Sun, X. S. (2015). Camelina oil derivatives and adhesion properties. Industrial Crops and Products, 73, 73-80.
Lu, C., & Kang, J. (2008). Generation of transgenic plants of a potential oilseed crop Camelina sativa by Agrobacterium-mediated transformation. Plant cell reports, 27(2), 273-278.
Maas, E. V., & Hoffman, G. J. (1977). Crop salt tolerance—current assessment. Journal of the irrigation and drainage division, 103(2), 115-134.
Maguire, J. D. (1962). Speed of germination—Aid in selection and evaluation for seedling emergence and vigor 1. Crop science, 2(2), 176-177.
Matthees, H. L., Thom, M. D., Gesch, R. W., & Forcella, F. (2018). Salinity tolerance of germinating alternative oilseeds. Industrial Crops and Products, 113, 358-367.
Miranda, D., Perea, M., & Magnitskiy, S. (2009). Propagación de especies pasifloráceas. Cultivo, poscosecha y comercialización de las pasifloráceas en Colombia: maracuyá, granadilla, gulupa y curuba. Sociedad Colombiana de Ciencias Hortícolas, Bogota, 69-96.
Mohammadi, Z., Rastegar, S., Abdollahi, F., & Hosseini, Y. (2018). Morphological and antioxidant enzymatic activity responses of sapodilla rootstock to salinity stress. J. Plant Process Funct6, 23-28.
Munns, R. (2011). Plant adaptations to salt and water stress: differences and commonalities. Advances in botanical research57, 1-32.
Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol.59, 651-681.
Mwando, E., Han, Y., Angessa, T. T., Zhou, G., Hill, C. B., Zhang, X. Q., & Li, C. (2020). Genome-wide association study of salinity tolerance during germination in barley (Hordeum vulgare L.). Frontiers in plant science11, 118.
 Nakagawa, J., Krzyzanowski, F.C., Vieira, R.D. & França-Neto, J.B. (1999). Testes de vigor baseados no desempenho das plântulas In: KRZYZANOWSKI, FC; VIEIRA, RD; FRANÇA NETO, JB Vigor de sementes: conceitos e testes. Londrina: Abrates, 9-13.
Neto, N. B. M, Saturnino, S. M., Bomfim, D. C., & Custódio, C. C. (2004). Water stress induced by mannitol and sodium chloride in soybean cultivars. Brazilian Archives of Biology and Technology, 47, 521-529.
Pakar, N., Pirasteh-Anosheh, H., Emam, Y., & Pessarakli, M. (2016). Barley growth, yield, antioxidant enzymes, and ion accumulation affected by PGRs under salinity stress conditions. Journal of Plant Nutrition, 39(10), 1372-1379.
Parihar, P., Singh, S., Singh, R., Singh, V. P., & Prasad, S. M. (2015). Effect of salinity stress on plants and its tolerance strategies: a review. Environmental science and Pollution research22(6), 4056-4075.
Rajabi Dehnavi, A., Zahedi, M., Ludwiczak, A., Cardenas Perez, S., & Piernik, A. (2020). Effect of salinity on seed germination and seedling development of sorghum (Sorghum bicolor (L.) Moench) genotypes. Agronomy, 10(6), 859.
Rauf, M., Munir, M., ul Hassan, M., Ahmad, M., & Afzal, M. (2007). Performance of wheat genotypes under osmotic stress at germination and early seedling growth stage. African journal of biotechnology, 6(8).
Sako, Y., McDonald, M. B., Fujimura, K., Evans, A. F., & Bennett, M. A. (2001). A system for automated seed vigour assessment. Seed science and technology, 29(3), 625-636.
Sakr, M. T., El-Emery, M. E., Fouda, R. A., & Mowafy, M. A. (2007). Role of some antioxidants in alleviating soil salinity stress. J Agric Sci Mansoura Univ, 32, 9751-9763.
Sanchez, P. L., Chen, M. K., Pessarakli, M., Hill, H. J., Gore, M. A., & Jenks, M. A. (2014). Effects of temperature and salinity on germination of non-pelleted and pelleted guayule (Parthenium argentatum A. Gray) seeds. Industrial Crops and Products, 55, 90-96.
Sarv, V. (2017). A comparative study of camelina, canola and hemp seed processing and products (Doctoral dissertation, University of Toronto (Canada)).
Shahbazi, M. & Kiani, A. (1997). Evaluation of rapeseed oil plant salt tolerance. Annual Reports of Seed and Plant Improvement Institute Biotechnology Research Center.
Silva, L. J. D., Medeiros, A. D. D., & Oliveira, A. M. S. (2019). SeedCalc, a new automated R software tool for germination and seedling length data processing. Journal of Seed Science, 41, 250-257.
Smith, P. T., & Cobb, B. G. (1991). Physiological and enzymatic activity of pepper seeds (Capsicum annuum) during priming. Physiologia Plantarum, 82(3), 433-439.
Sonneveld, C., Van den Bos, A. L., & Voogt, W. (2005). Modeling osmotic salinity effects on yield characteristics of substrate-grown greenhouse crops. Journal of plant nutrition, 27(11), 1931-1951.
Thaker, P., Brahmbhatt, Nayana. & Shah, K. (2021). A Review: Impact of Soil Salinity on Ecological, Agricultural and Socio-Economic Concerns. Int. J. Adv. Res. 9(07), 979-986
Toenniessen, G. H. (1984). Review of the world food situation and the role of salt-tolerant plants.
Tuan, P. A., Sun, M., Nguyen, T. N., Park, S., & Ayele, B. T. (2019). Molecular mechanisms of seed germination. In Sprouted Grains (pp. 1-24). AACC International Press.
Uçarlı, C. (2020). Effects of Salinity on Seed Germination and Early Seedling Stage. In Abiotic Stress in Plants. IntechOpen.
USEPA, (2013). Regulation of Fuels and Fuel Additives: 2012 Renewable Fuel Standards; Final Rule. Federal Register, 78(158), pp.49794-830.
Vafaei, N., Tavakolipour, H., & Ghodsvali, A. R. (2010). Some biophysical properties of oily sunflower achenes in Golestan province.
van Genuchten, M. T. (1984). Analysis of crop salt tolerance data. Soil salinity under irrigation: Processes and management, 258-271.
van Genuchten, M.Th. and Hoffman, G.J. (1984). Analysis of crop salt tolerance data. P: 258-271. In: Shainberg, I., and J. Shalhevet (eds.), Soil Salinity Under Irrigation. Procces and Management.
van Slyke, T. (2019). Fields of Dreams: Scenarios to Produce Selected Biomass and Renewable Jet Fuels that Fulfill European Union Sustainability Criteria.
 Waraich, E. A., Ahmed, Z., Ahmad, R., Saifullah, Shahbaz, M., & Ehsanullah. (2017). Modulation in growth, development, and yield of Camelina sativa by nitrogen application under water stress conditions. Journal of Plant Nutrition, 40(5), 726-735.
Warwick, S. I., & Francis, A. (2006). The biology of invasive alien plants in Canada. 6. Berteroa incana (L.) DC. Canadian journal of plant science, 86(4), 1297-1309.
Wang, S. J., Chen, Q., Li, Y., Zhuo, Y. Q., & Xu, L. Z. (2017). Research on saline-alkali soil amelioration with FGD gypsum. Resources, Conservation and Recycling121, 82-92.
Werner, J. (2019). Market Overview of the Water-Energy-Food Nexus in Iran. Embassy of the Kingdom of the Netherlands in the Islamic Republic of Iran.
Willmott, C. J. (1982). Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society, 63(11), 1309-1313.
Yadav, P. V., Khatri, D., & Nasim, M. (2017). Salt and PEG Induced Osmotic Stress Tolerance at Germination and Seedling Stage in Camelina sativa: A Potential Biofuel Crop. J. Seed Sci, 10, 27-32.
Yohannes, G., Kidane, L., Abraha, B., & Beyene, T. (2020). Effect of Salt Stresses on Seed Germination and Early Seedling Growth of Camelina sativa L. Momona Ethiopian Journal of Science, 12(1), 1-19.