تغییرات مکانی مقاومت‌ فروروی و برشی خاک و اثر نوع کاربری و واحد فیزیوگرافی بر آن‌ها

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم خاک، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران

2 بخش علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شیراز

چکیده

     بررسی تغییرپذیری مکانی مقاومت­های فروروی و برشی از اهمیت ویژه­ای برای مدیریت و بهبود باروری خاک­های کشاورزی در راستای تولید پایدار برخوردار است. این پژوهش با اهداف ‌بررسی تأثیر نوع کاربری اراضی و واحدهای فیزیوگرافی بر مقاومت فروروی وبرشی خاک و تغییرپذیری مکانی این ویژگی­ها در خاک­های دشت لپویی استان فارس انجام شد. اندازه­گیری مقاومت فروروی و برشی با دستگاه­های نفوذسنج دستی و برش­پره­ای در 130 نقطه مشاهداتی از لایه سطحی (0 تا 30 سانتی­متری) خاک در سه واحد فیزیوگرافی (تپه، دشت دامنه­ای و دشت) و دو کاربری اراضی (کشت آبی و مرتع) موجود در منطقه انجام شد. برای بررسی تغییرپذیری ویژگی­های مورد مطالعه از سه تخمینگر کوکریجینگ، کریجینگ­معمولی و وزن­دهی معکوس فاصله استفاده شد. مشتقات اولیه و ثانویه مدل رقومی ارتفاع نیز به­عنوان متغیرهای کمکی برای پیش­بینی متغیر اصلی به­و­سیله تخمینگر کوکریجینگ استفاده شدند. نتایج همبستگی خطی رابطه معکوسی بین مقاومت برشی با مقاومت فروروی و پارامترهای مربوط به ارتفاع نشان داد. به­نحوی­که رابطه معکوس و معنی­داری بین مقاومت برشی و مقاومت فروروی در واحدهای فیزیوگرافی دشت­دامنه‌ای، دشت رسوبی و تپه مشاهده شد. رابطه مذکور بین دو ویژگی در کاربری زراعت آبی و مرتع نیز مشاهده شد. روش کوکریجینگ برای براورد مقاومت برشی و فروروی بر اساس آماره ضریب تبیین (R2) با مقادیر 55/0 و 38/0 عملکرد مناسب‌تری داشت. به‌طورکلی روش‌های زمین‌آماری از دقت متوسطی در پیش­بینی مقاومت فروروی وبرشی خاک برخوردار بودند. بنابراین پیشنهاد می­شود در مطالعات آتی به ­بررسی عملکرد سایر رویکردهای مدل‌سازی خطی و غیرخطی (توابع انتقالی) برای پیش­بینی این دو ویژگی خاک پرداخته شود.

کلیدواژه‌ها


عنوان مقاله [English]

Spatial Variations of Soil Penetration Resistance and Shear Strength and the Effect of Land Use Type and Physiographic Unit on These Characteristics

نویسندگان [English]

  • Pegah Khosravani 1
  • Ali Akbar Moosavi 2
  • Majid Baghernejad 1
1 Department of Soil Science, College of Agriculture, Shiraz University, Shiraz, Iran
2 Department of Soil Science, College of Agriculture, Shiraz University, Shiraz
چکیده [English]

Investigating spatial variability of penetration and shear strength properties is of particular importance for the management and improvement of agricultural soil fertility for sustainable production. The aim of this research was to investigate the effect of land use type and physiographic units on soil penetration and shear strength, and their spatial variability in Lapoui plain. The soil penetration and shear strength were measured using cone index penetrations and cutting blade at 130 observation points with three replication at the top layer (0-30 cm) in three physiographic units and two land uses in the area. The primary and secondary derivatives of the digital elevation model were also used as covariates. To evaluate the spatial variability of the proposed variables, three covariates including, co-kriging, ordinary kriging, and inverse distance weighting were used. The results of linear correlation showed an inverse relationship between shear strength and penetration resistance and DEM covariates. As a significant inverse relationshipwas observed between shear strength and penetration resistancein the physiographic units of piedmont plain, alluvial plain and hill. The same inverse and significant relationship was also found between the two characteristics in the irrigated and rainfed land use. The co-kriging method for shear and penetration strength based on the coefficient of determination (R2), with values of 0.55 and 0.38, indicated a good performance. Generally, geostatistical methods showed a moderate to poor accuracy in predicting penetration and shear strength. Further work is suggested to investigate the performance of other linear and nonlinear modeling approaches (pedotransfer functions, PTFs) in prediction of the abovementioned soil parameters.

کلیدواژه‌ها [English]

  • Co-kriging predictors
  • Kriging predictors
  • Inverse distance weighting predictors
  • Plain
  • Pidmont plain
Abdollahi, S., Delavar, M. A., & Shekari, P. (2013). Spatial distribution mapping of  Pb, Zn and Cd and soil pollution assessment in Anguran area of Zanjan province. Journal of Water and Soil, 6, 1410- 1420.
Aghasi, B., Jalalian, A., Khademi, H., & Toomanian, N. (2017). Sub-basin scale spatial variability of soil properties in Central Iran. Arabian Journal of Geosciences, 10(6), 136.
Asghari, Sh., Neyshabori, F., Abasi, N., Asghar Zadeh, Sh., & Ostan. (2013). Effect of polyacrylamide, manure, vermicompost and biological sludge on aggregate stability, subsidence resistance and water usability in a sandy loam soil. Journal of Soil and Water Knowledge, 20, 15-29.
Bachmann, J., Contreras, K., Hartge, K. H., & MacDonald, R. (2006). Comparison of soil strength data obtained in situ with penetrometer and with vane shear test. Soil and Tillage Research, 87(1),112-118.
Brevik, E. C., Cerdà, A., Mataix-Solera, J., Pereg, L., Quinton, J. N., Six, J., & Van Oost, K. (2015). The interdisciplinary nature of soil. Soil, 1(1), 117-129.
Burgess, T. M., & Webster, R. (1980). Optimal interpolation and isarithmic mapping of soil properties: II block kriging. Journal of Soil Science, 31(2), 333-341.
Castro Filho, C. D., Lourenço, A., Guimarães, M. D. F., & Fonseca, I. C. B. (2002). Aggregate stability under different soil management systems in a red latosol in the state of Parana, Brazil. Soil and Tillage Research, 65(1), 45-51.
Davis, B. M. (1987). Uses and abuses of cross-validation in geostatistics. Mathematical geology, 19(3), 241-248.
Emadi, M., Shahriari, A. R., Sadegh-Zadeh, F., Jalili Seh-Bardan, B., & Dindarlou, A. (2016). Geostatistics-based spatial distribution of soil moisture and temperature regime classes in Mazandaran province, northern Iran. Archives of Agronomy and Soil Science, 62(4), 502-522.
Goovaerts, P. (2000). Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology, 228(1-2), 113-129.
Grimm, R., Behrens, T., Märker, M., & Elsenbeer, H. (2008). Soil organic carbon concentrations and stocks on Barro Colorado Island- Digital soil mapping using Random Forests analysis. Geoderma, 146(1-2), 102-113.
Jahangardi, M., & Pedometry T. (2006). Spatial statistics. First Ed., Tehran. Eyelid Publications. 453 p.
Khalil Moghadam, B., Afyoni, M., Jalalian, A., Abbaspour, K., & Dehghani, A. (2011). Estimation of soil shear strength using transfer and soil spatial prediction functions. Journal of Water and Soil, 187-195.
Komandi, G. (1992). On the mechanical properties of soil as they affect traction. Journal of Terramechanics, 29(4-5), 373-380.
Lin, L. (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics, 45, 255–268.
Mohammadi, J. (2006). Pedometrics, Volume II (Spatial statistics) .Pelk Publishers, Tehran.
Moosavi, A. A., & Sepaskhah, A. R. (2012). Spatial variability of physicochemical properties and hydraulic characteristics of a gravelly calcareous soil. Archives of Agronomy and Soil Science, 58, 631-656.
Moradi Choghamarani, F., Moosavi, A. A., & Khalili Moghaddam, B. (2016). Spatial variability of water retention parameters and saturated hydraulic conductivity in a calcareous Inceptisols (Khuzestan province of Iran) under sugarcane cropping. Archives of Agronomy and Soil Science, 62,1686-1699.
Mousavi, S. R., Sarmadian, F., Dehghani, S., Sadikhani, M. R., & Taati, A. (2017). Evaluating inverse distance weighting and kriging methods in estimation of some physical and chemical properties of soil in Qazvin Plain. Eurasian Journal of Soil Science, 6(4), 327.
Movahedan, M., Abbasi, V., &  Keramati, K. (2013). The effect of polyvinyl acetate polymer on the stability of dry aggregates. Journal of Soil Research, 27, 606-616.
Mozaffari, H., Moosavi, S. A., & Sepaskhah, A. (2019). Effect of land use on some physical and chemical properties of a calcareous soil. Journal of Soil Research. 33(4), 525- 540.
Oliver, M. A., & Webster, R. (2014). A tutorial guide to geostatistics: Computing and modelling variograms and kriging. Catena, 113, 56-69.
Park, H. M. (2008). Univariate analysis and normality test using SAS, Stata, and SPSS. A Working Paper of University Information Technology Services (UITS) Center for Statistical and Mathematical Computing, Indiana University, 41 p.
Reza, S. K., Nayak, D. C., Chattopadhyay, T., Mukhopadhyay, S., Singh, S. K., & Srinivasan, R. (2016). Spatial distribution of soil physical properties of alluvial soils: a geostatistical approach. Archives of Agronomy and Soil Science, 62(7), 972-981.
Rezaei, M., & Tabatabai Klor R. (2019). Investigation of the effect of depth and moisture on soil shear strength in field and laboratory, 50 (2), 367-374.
Robinson, T. P., & Metternicht, G. (2006). Testing the performance of spatial interpolation techniques for mapping soil properties. Computers and Electronics in Agriculture, 50(2), 97-108.
Rossel, R.A., McBratney, A.B., )2008(. Diffuse reflectance spectroscopy as a tool 731 for digital soil mapping, in: McBratney, A.B., Hartemink, A.E., Mendonca-Santos, L. 732 (Eds.), Digital Soil Mapping with Limited Data. Developments in Soil.
Sarmadian, F., & Taghizadeh Mehrjerdi, R. (2010). Comparison of interpolation methods to prepare soil quality characteristics map Case study (Faculty of Agriculture). Iranian Soil and Water Research, 40 (2).
Shao, W. H., Ji, Y. J., Li, P. Y. & You, L. B. (2006). Spatial Variability of Soil Nutrients and Influencing Factors in a Vegetable Production Area of Hebei Province in China. Nutrient Cycling in Agroecosystems, 75, 201-212.
Taati, A., Sarmadian, F.,  Mottaqian, H. & Mousavi, S. R. (2020). Zoning of some surface and depth characteristics of soil profiles using geostatistical technique in a part of Qazvin plain lands. Man and the Environment.
Tesfahunegn, G. B., Tamene, L., & Vlek, P. L. (2011). Catchment-scale spatial variability of soil properties and implications on site-specific soil management in northern Ethiopia. Soil and Tillage Research, 117, 124-139.
Uyan, M. (2016). Determination of agricultural soil index using geostatistical analysis and GIS on land consolidation projects: A case study in Konya/Turkey. Computers and Electronics in Agriculture, 123, 402-409.
Webster, R., & Oliver, M. A. (2007). Geostatistics for environmental scientists. John Wiley & Sons.
Western, A. W., Zhou, S. L., Grayson, R. B., McMahon, T. A., Blöschl, G., & Wilson, D. J. (2004). Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes. Journal of  Hydrology, 286(1-4), 113-134.
Wilding, L., & Drees, L. R. (1983). Spatial variability and pedology. Pedogenesis and soil taxonomy/edited by LP Wilding, NE Smeck, and GF Hall.