اثر کود حفاظتی سیلیکات فسفیت پتاسیم بر پاسخ‌های تغذیه‌ای توت‌فرنگی (Fragaria x ananassa) و کنترل کنه تارتن دونقطه‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و مهندسی خاک، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران

2 گروه علوم و مهندسی خاک، دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران

3 گروه گیاه پزشکی، دانشکده علوم و مهندسی کشاورزی، دانشگاه تهران

4 مدیرعامل شرکت کود و سم زرافشان

چکیده

استفاده از آفت­کش­ها، به­ویژه در محصولاتی که به­صورت تازه مصرف می­شوند موجب نگرانی است. هدف از این پژوهش استفاده از ترکیب شیمیایی سنتز شده از عناصر غذایی در کنار ترکیبات کمپلکس کننده و بررسی اثر آن­ها بر کنترل کنه تارتن در گیاه توت‌فرنگی است. تیمارها شامل ترکیب کود تجاری ویروگارد در دو غلظت (2 و 5 در هزار ) (غلظت توصیه شده توسط شرکت سازنده) و کود حفاظتی سنتز شده در این پژوهش در غلظت 10 در هزار (غلظت موثر تعیین شده در پیش آزمایش) و ترکیب کود حفاظتی+ آفت­کش ( نصف غلظت مجاز) و تیمار شاهد (آب مقطر) در دو مرحله اعمال تیمارهای کودی قبل از آلودگی گیاه به کنه و بعد از آلودگی گیاه به کنه در شش تکرار بود که در شرایط گلخانه­ای اجرا گردید. در دوره داشت پس از اعمال تیمارهای کودی، درصد تلفات کنه متأثر از تیمارهای کودی با فرمول هندرسون-تیلتون اندازه­گیری شد. پس از دوره داشت، گیاهان برداشت و ویژگی­های ماده تر و خشک، مساحت سطح برگ به‌عنوان خصوصیات مورفولوژیکی؛ غلظت عناصر غذایی پتاسیم، فسفر و سیلیسیم در اندام هوایی گیاه و همچنین pH و اسیدیته قابل تیتراسیون(TA)، ویتامین ث، مواد جامد کل محلول (TSS) و محتوای آنتی‌اکسیدان میوه به‌عنوان خصوصیات پس از برداشت میوه توت‌فرنگی، اندازه­گیری شد. نتایج نشان داد بیشترین درصد تلفات کنه (2/79 درصد) در تیمار کود حفاظتی+سم در هر دو مرحله اعمال قبل و بعد از آلودگی گیاه به کنه بود. کود حفاظتی سنتز شده بیشترین اثر را بر روی وزن تر و خشک شاخساره داشت. بیشترین مقدار پتاسیم (g/kg 26/29)، در کود ویروگارد در غلظت 5 در هزار بود و برای دو عنصر فسفر (g/kg 48/6) و سیلیسیم (mg/kg 753) مربوط به کود حفاظتی سنتز شده به‌صورت تکی بود. در مجموع، استفاده از ترکیبات مورد استفاده، علاوه برکاهش مصرف سموم، کیفیت میوه توت فرنگی را نیز افزایش داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effective of Potassium Phosphite Silica Protective Fertilizer on Nutritional Responses and Control of Two Spotted Spider Mite on Strawberry (Fragaria x ananassa)

نویسندگان [English]

  • Seyed Mohsen Hoseini Hoseinabad 1
  • Babak Motesharezadeh 2
  • Jamasb Nouzari 3
  • Peyman Azarfam 4
1 Soil Science Department, Faculty of Agricultural Engineering & Technology, University of Tehran
2 Department of Soil Science, Faculty of Agricultural Science & Engineering,, University of Tehran
3 Department of Plant Protection, Faculty of Agricultural Science & Engineering, University of Tehran
4 Head of Zarafshan Company
چکیده [English]

Pesticides consumption, especially in fresh-use crops creates some concerns. The aim of this study is to investigate the effect of chemical synthesis of essential and quasi-essential elements along with complexing compounds and their effects on pest control of two spotted spider mite in Strawberry. Treatments included the combination of virogard commercial fertilizer in two concentrations (2 and 5 per thousand, recommended by the manufacturer) and protective fertilizer synthesized in this study at a concentration of 10 per thousand (effective concentration determined in the pre-test) and the combination of protective fertilizer + pesticide (half permissible concentration) and control treatment (distilled water) in two stages of application of fertilizer treatments (pre-infested and post-infested plants to mites) with six replications which were performed in greenhouse conditions. In the growth period after fertilizer application, the death mites percent was estimated by Henderson-Tilton formula. Also, after three months, the plants were harvested and some morpho-physiological and nutritional characteristics were measured. Determination of nutrient concentrations of potassium, phosphorus and silica in aerial parts of the plant as well as determination of pH and titratable acidity, Vitamin C, Total Soluble Solids and Antioxidant Levels of Fruit as Postharvest Properties of Strawberries were also measured. The highest death percentage of mite (79.2%) was due to the protective fertilizer + acaricide treatment in both stages before and after plant infestation to mite. The synthesized fertilizer had the greatest effect on fresh and dry shoots weight.  Virogard composition at 5/1000 concentrations, It had the greatest effect on fresh and dry weights. The highest concentration of potassium (29.26 g/kg) was belong to protective fertilizer+ acaricide and the highest concentration of phosphorus (6.48 g/kg) and silicon (753 mg/kg) was belong to the synthesized protective fertilizer individually. Considering the efficacy of the compounds used, it is recommended to use these compounds as inducers of plant resistance in order to reduce the use of pesticides and improve the product quality.

کلیدواژه‌ها [English]

  • Induced resistance
  • IPM
  • Storage time
  • Protective fertilizer
  • Strawberry
Achary, V. M. M., Ram, B., Manna, M., Datta, D., Bhatt, A., Reddy, M. K., Agrawal, P. K. (2017). Phosphite: a novel P fertilizer for weed management and pathogen control. Plant Biotechnology Journal, 15(12), 1493-1508.
Aghamohammadi, Z., Etesami, H., Alikhani, H. A. (2016). Vermiwash allows reduced application rates of acaricide azocyclotin for the control of two spotted spider mite, Tetranychus urticae Koch, on bean plant (Phaseolus vulgaris L.). Ecological Engineering, 93, 234-241.
Ahmad, F, R., Aziz, T., Maqsood, M, A., Tahrir, M, A., Kanwal, S. (2007). Effect of silicon application on wheat (Triticum aestivum L.) growth under water deficiency stress. Emirates Journal of Food and Agriculture, 1-7.
Alizade, M., Hosseini, M., Awal, M. M., Goldani, M.  Hosseini, A. (2016). Effects of nitrogen fertilization on population growth of two-spotted spider mite. Systematic and Applied Acarology, 21(7), 947–956.
Amtmann, A., Troufflard, S., Armengaud, P. (2008). The effect of potassium nutrition on pest and disease resistance in plants. Physiologia Plantarum, 133(4), 682-691.
Asiwe, J. A. N. (2009). The impact of phosphate fertilizer as a pest management tactic in four cowpea varieties. African Journal of Biotechnology, 8(24), 7182-7188.
Bakhat, H. F., Bibi, N., Zia, Z., Abbas, S., Hammad, H. M., Fahad, S., Saeed, S. (2018). Silicon mitigates biotic stresses in crop plants: a review. Crop Protection, 104: 21-34.‏
Bringhurst, R.S. and Voth, V. (1984). Strawberry plant Selva. U.S. Patent Application No. 06/452,696.
Chandler, D., Bailey, A. S., Tatchell, G. M., Davidson, G., Greaves, J., Grant, W. P. (2011). The development, regulation and use of biopesticides for integrated pest management. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 366(1573), 1987-1998.
Coskun, D., Deshmukh, R., Sonah, H., Menzies, J. G., Reynolds, O., Ma, J. F., Bélanger, R. R. (2019). The controversies of silicon’s role in plant biology. New Phytologist, 221(1), 67-85.
Esringü, A., Turan, M., Gunes, A., Eşitken, A., Sambo, P. (2011). Boron application improves on yield and chemical composition of strawberry. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 61(3), 245-252.
Dahmardeh, A., Latifi, M. and Riseh, R. S. (2018). Effect of induced resistance in bean plants on Tetranychus urticae life table parameters. Systematic and Applied Acarology, 23(8), 1627-1640.
Dermauw, W., Wybouw, N., Rombauts, S., Menten, B., Vontas, J., Grbic, M., Clark, R.M., Feyereisen, R. Van Leeuwen, T. (2013). A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae. Proceedings of the National Academy of Sciences, 110(2), E113–E122.
Dordas, C. (2008). Role of nutrients in controlling plant diseases in sustainable agriculture. A review. Agronomy for Sustainable Development. 28, 33–46.
Elliott, C. L., & Snyder, G. H. (1991). Autoclave-induced digestion for the colorimetric determination of silicon in rice straw. Journal of Agricultural and Food Chemistry, 39(6), 1118-1119.
Epstein, E.  and Bloom, A.J. (2005). Mineral Nutrition of Plants: Principles and Perspectives, second edition. Sinauer Associates, Inc.
Estrada-Ortiz, E., Trejo-Téllez, L. I., Gómez-Merino, F. C., Núñez-Escobar, R., Sandoval-Villa, M. (2012). Phosphite on growth and fruit quality in strawberry. In II International Symposium on Soilless Culture and Hydroponics 947 (pp. 277-282).
Faniadis, D., Drogoudi, P. D., Vasilakakis, M. (2010). Effects of cultivar, orchard elevation, and storage on fruit quality characters of sweet cherry (Prunus avium L.). Scientia Horticulturae, 125(3), 301-304.
Frew, A., Weston, L. A., Reynolds, O. L., & Gurr, G. M. (2018). The role of silicon in plant biology: a paradigm shift in research approach. Annals of Botany, 121(7), 1265-1273.
Henderson, C. F., Tilton, E. W. (1955). Tests with acaricides against the brown wheat mite. Journal of Economic Entomology, 48(2), 157-161.
Heuer, S., Gaxiola, R., Schilling, R., Herrera‐Estrella, L., López‐Arredondo, D., Wissuwa, M., Rouached, H. (2017). Improving phosphorus use efficiency: a complex trait with emerging opportunities. The Plant Journal, 90(5), 868-885.
Liang, Y., Nikolic, M., Bélanger, R., Gong, H., Song, A. (2015). Silicon and insect pest resistance. In Silicon in Agriculture (pp. 197-207). Springer, Dordrecht.
Jeer, M., Telugu, U. M., Voleti, S. R., Padmakumari, A. P. (2017). Soil application of silicon reduces yellow stem borer, Scirpophaga incertulas (Walker) damage in rice. Journal of Applied Entomology 141: 189–201.
Koolabadi, Z., Najjar, M. B., Abdolzadeh, A. (2019). Increased growth rate, lignin, and shikonin levels in Onosma dichroantha bioss. As affected by silicon treatment. Journal of Agricultural Science and Technology, 21(3), 671-681.
Kuo, S. (1996). “Phosphorus. P 869-919.” Methods of soil analysis. Part 3.
Liljeroth, E., Lankinen, A., Wiik, L., Burra, D. D., Alexandersson, E., Andreasson, E. (2016). Potassium phosphite combined with reduced doses of fungicides provides efficient protection against potato late blight in large-scale field trials. Crop Protection, 86, 42-55.‏
Machinandiarena, M. F., Lobato, M. C., Feldman, M. L., Daleo, G. R., Andreu, A. B. (2012). Potassium phosphite primes defense responses in potato against Phytophthora infestans. Journal of Plant Physiology, 169(14), 1417-1424.
Malakouti, M. J., Shahabi, A. A. and Bazargan, K. (2005). Potassium in agriculture of Iran. Sana publication. 352pp. [In Persian]
Manoza, F. S., Mushongi, A. A., Harvey, J., Wainaina, J., Wanjuki, I., Ngeno, R., Darnell, R., Gnonlonfin, B. G. Massomo, S. M. (2017). Potential of using host plant resistance, nitrogen and phosphorus fertilizers for reduction of Aspergillus flavus colonization and aflatoxin accumulation in maize in Tanzania. Crop Protection, 93, pp.98-105.
Meharg, C., & Meharg, A. A. (2015). Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality, in rice? Environmental and Experimental Botany, 120, 8-17.
Moyer, C., Peres, N. A., Datnoff, L. E., Simonne, E. H., Deng, Z. (2008). Evaluation of silicon for managing powdery mildew on gerbera daisy. Journal of Plant Nnutrition, 31(12), 2131-2144.‏
Munns, R., Tester, M. (2008). Mechanism of salinity tolerance. Annu. Rev. Plant Biology, 59, 651–681.
Pieterse, C. M. J., Leo-Reyes, A., Van der Ent, S. Van wees, S. C. M. (2009). Networking by small-molecule hormones in plant immunity. Nature Chemical Biology, 5, 308–316.
Ramírez-Godoy, A., del Pilar, V. M., Jiménez-Beltrán, N., Restrepo-Díaz, H. (2018). Effect of potassium silicate application on populations of sian citrus psyllid in Tahiti lime. Horticultural Technology, 28(5), 684-691.
Ranganathan, S., Suvarchala, V., Rajesh, Y.B.R.D., Prasad, M.S., Padmakumari, A.P., Voleti, S.R. (2006). Effects of silicon sources on its deposition, chlorophyll content, and disease and pest resistance in rice. Biologia Plantarum, 50(4), pp.713-716.
Reuveni, R., Reuveni, M. (1998). Foliar-fertilizer therapy—a concept in integrated pest management. Crop Protection, 17(2), 111-118.
Ryan, J., Estefan, G., Rashid, A. (2001). Soil and plant analysis laboratory manual, International Centre for Agricultural Research in the Dry Areas (ICARDA). Aleppo and National Agricultural Research Centre (NARC), Islamabad, Pakistan.
Sau, S., Sarkar, S., Ghosh, B., Ray, K., Deb, P., Ghosh, D. (2018). Effect of foliar application of B, Zn and Cu on yield, quality and economics of rainy season guava cultivation. Current Journal of Applied Science and Technology, 28(1), 1-10.
Scopes, N. E. A. (1985). Red spider mite and the predator Phytoseiulus persimilis. Biological pest control: the glasshouse experience/edited by NW Hussey and N. Scopes.
Seyedi, A., Ebadi, A. and Babalar, M. (2014) Effect of potassium levels in nutrient solution, harvest season, and plant density on quantity and quality of strawberry fruit (CV. Selva) in hydroponic system conditions, Iranian Journal of Horticultural Science, 44(4), 423-429. (In Farsi)
Srinivas, M., Prasad, V. M., Baradwaj, K., Ajmeera, V., Ravulapenta, S., Veerendra, A. C. (2015).  Effect  of  different  sources  o f  organic  and  inorganic  plant  nutrients  on  fruit  growth,  yield    and    quality    of    guava    (Psidium  guajava L.)     cv.     Allahabad     Safeda.  Environment   and    Ecology. 33(1), 126–130.
Wang, S. Y., Galletta, G. J. (1998). Foliar application and Potassium silicate induces metabolic changes in strawberry plants. Journal of Plant Nutrition, 21(1), 157-167.
Warabieda, W., Oszak, R. (2010). Effect of exogenous methyl jasmonate on numerical growth of the population of the two-spotted spider mite (Tetranychus urticae Koch.) on strawberry plants and young apple trees. Journal of Plant Protection Research, 50(4), 541–544.
Yaghubi, K., Vafaee, Y., Ghaderi, N., & Javadi, T. (2019). Potassium silicate improves salinity resistant and affects fruit quality in two strawberry cultivars grown under salt stress. Communications in Soil Science and Plant Analysis, 50(12), 1439-1451.