تحلیل دمای سالانه خاک در گستره ایران با استفاده از روش مجموعهی مقادیر تکین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

2 گروه آمار، دانشکده علوم پایه، دانشگاه بوعلی سینا، همدان، ایران

چکیده

آگاهی از رژیم حرارتی خاک و نوسانات آن علاوه بر تاثیر بر توازن انرژی تابشی کره زمین، از خسارات احتمالی در بخش کشاورزی جلوگیری کرده و می‌تواند موجب افزایش بازدهی محصولات شود. در این مطالعه با بکارگیری روش تحلیل مجموعه­ی مقادیر تکین (SSA)، روند‌ها و مولفه‌های نوسانی و همچنین میزان انطباق مولفه‌های متناظر سری‌های زمانی دمای خاک (ST) و سری‌های زمانی دمای هوا و بارش در ۲۸ ایستگاه هواشناسی کشور در سه کلاس حرارتی مزیک، ترمیک و هایپرترمیک، در ایران در طی سال‌های 1993-2017 مورد بررسی قرار گرفت. نتایج نشان داد بیشترین نرخ افزایش ST در رژیم حرارتی مزیک و کمترین نرخ افزایش ST سطحی در رژیم حرارتی ترمیک واقع شده است. نوسانات بارش در فاز معکوس نسبت به نوسانات ST قرار دارند. دوره‌های بازگشت غالب در سری‌های سالانه ۳/۲ و 11-12 ساله بودند که می‌تواند مرتبط با تغییرات دو سالانه QBO و جریانات مداری و همینطور چرخه‌های ۱۱ ساله لکه های خورشیدی باشند. با استفاده از انطباق های کوتاه و طولانی مدت مشخص شده بین روند و مولفه های نوسانی سری زمانی دمای خاک و دمای هوا، می­توان به تولید و بازسازی تغییرات دمای خاک بر مبنای دمای هوا پرداخت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Annual Soil Temperature Analysis in Iran Using Singular Spectrum

نویسندگان [English]

  • Ali -Akbar Sabziparvar 1
  • Fateme Khoshhal jahromi 1
  • Rahim Mahmoudvand 2
1 Water Science and Engineering Department, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
2 Department of Statistics, Faculty of Science, Bu-Ali Sina University, Hamedan, Iran
چکیده [English]

Soil temperature (ST) variation can affect the earth energy balance. Moreover, the awareness of the soil thermal regime and its thermal fluctuations can prevent possible damages to agriculture and can increase crop productivity. In this study, using the singular spectrum analysis (SSA), trends and oscillation components, as well as the degree of the coincidence of the soil temperature (ST), air temperature (AT) and precipitation time series were investigated in three thermal regime classes namely: Mesic, Thermic and, Hyper thermic, in 28 high quality weather sites during 1993-2017. The results showed that the highest and lowest rates of ST increases have occurred in the Mesic and the Thermic thermal regime, respectively. The precipitation fluctuations were in the opposite phase with the ST fluctuations. The dominant return periods in the annual series were 2.3 and 11-12 years that could be related to quasi-biennial oscillation (QBO) variations, and 11-year cycles of sunspots. By the implementation of the coincidence which exists between the short and long term oscillations of ST and AT time series, one can generate and reconstruct ST data gaps based on AT.

کلیدواژه‌ها [English]

  • SSA
  • Oscillatory components
  • QBO
  • 11-12 year solar cycle
 Alijani, B.,  Bayat, A., Doostkamian, M. and  Balyani Y. (2016). Spectral analysis of time series for annual precipitations in Iran. Geography and planning, 20(57), 217- 236. (In Farsi)
Allen, M. R. and Smith, L. A. (1996). Monte Carlo SSA: Detecting irregular oscillations in the presence of colored noise. Journal of climate, 9(12), 3373-3404.
Araghi, A., Adamowski, J., Martinez, C. J. and Olesen, J. E. (2019). Projections of future soil temperature in northeast Iran. Geoderma, 349, 11-24.
Araghi, A., Mousavi-Baygi, M. and Adamowski, J. (2016). Detection of trends in days with extreme temperatures in Iran from 1961 to 2010. Theoretical and Applied Climatology, 125(1-2), 213-225.
Araghi, A., Mousavi-Baygi, M. and Adamowski, J. (2017). Detecting soil temperature trends in Northeast Iran from 1993 to 2016. Soil and Tillage Research, 174, 177-192.
Asakereh, H. (2012). Priciple component analysis of extreme of Zanjan city precipitation. Geographical research, 27 (2), 1-18. (In Farsi)
Balyani, Y., Fazelnia, Gh. and Bayat, A. (2012). A study and prediction of annual temperature in Shiraz using ARIMA model. Geographic space, 12(38), 127-144. (In Farsi)
Bartlett, M. G., Chapman, D. S. and Harris, R. N. (2005). Snow effect on North American ground temperatures, 1950–2002. Journal of Geophysical Research: Earth Surface, 110(F3).
Chudinova, S. M., Frauenfeld, O. W., Barry, R. G., Zhang, T. and Sorokovikov, V. A. (2006). Relationship between air and soil temperature trends and periodicities in the permafrost regions of Russia. Journal of Geophysical Research: Earth Surface, 111(F2).
Daneshmand H.  and  Mahmoudi P. (2017). A spectral analysis of Iran's droughts. Iranian Journal of Geophysics,10( 4), 28-47. (In Farsi)
Ghil, M., Allen, M. R., Dettinger, M. D., Ide, K., Kondrashov, D., Mann, M. E., Robertson, A. W., Saunders, A., Tian, Y., Varadi, F. and Yiou, P. (2002). Advanced spectral methods for climatic time series. Reviews of geophysics, 40(1), 3-1.
Golyandina, N., Nekrutkin, V. and Zhigljavsky, A. A. (2001). Analysis of time series structure: SSA and related techniques. Chapman and Hall/CRC.
Hassani, H., Mahmoudvand, R. and Zokaei, M. (2011). Separability and window length in singular spectrum analysis. Comptes rendus mathematique, 349(17-18), 987-990.
Hu, Q. and Buyanovsky, G. (2003). Climate effects on corn yield in Missouri. Journal of Applied Meteorology, 42(11), 1626-1635.
Hu, Q. and Feng, S. (2003). A daily soil temperature dataset and soil temperature climatology of the contiguous United States. Journal of applied meteorology, 42(8), 1139-1156.
Lal, R. and Shukla, M. K. (2004). Principles of soil physics. Marcel Dekker, Inc, New York, p 682.
Mohammadi, M. and Forouzanfard, M. (2016). Investigating the trend of soil temperature changes at different depths in some climatic regions of Iran. Journal of climate research, 25, 127-140. (In Farsi)
Portmann, R. W., Solomon, S. and Hegerl, G. C. (2009). Spatial and seasonal patterns in climate change, temperatures, and precipitation across the United States. Proceedings of the National Academy of Sciences, 106(18), 7324-7329.
Sabziparvar A.A.,  Siroos, N. and Bayat, H. (2014). Effect of using time-lag between maximum screen temperature and soil temperature in improving annual soil regression equations. Water and Soil Conservation, 21(3), 31-54.  (In Farsi)
Skinner, W. R. and Majorowicz, J. A. (1999). Regional climatic warming and associated twentieth century land-cover changes in north-western North America. Climate Research, 12(1), 39-52.
Webb, J., Amon, B., Subedi, M. and Fullen, M. A. (2017). Temporal changes in soil temperature at Wolverhampton, UK and Hohe Warte, Vienna, Austria 1976–2010. Weather, 72(9), 260-265.
Wu, C. L., Chau, K. W. and Fan, C. (2010). Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques. Journal of Hydrology, 389(1-2), 146-167.
Yang, M., Nelson, F. E., Shiklomanov, N. I., Guo, D. and Wan, G. (2010). Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research. Earth-Science Reviews, 103(1-2), 31-44.
Yue, S., Pilon, P., Phinney, B. and Cavadias, G. (2002). The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrological processes, 16(9), 1807-1829.
Zhang, T., Barry, R. G., Gilichinsky, D., Bykhovets, S. S., Sorokovikov, V. A. and Ye, J. (2001). An amplified signal of climatic change in soil temperatures during the last century at Irkutsk, Russia. Climatic Change, 49(1-2), 41-76.