بررسی توابع تولید در تخمین عملکرد ذرت دانه‌ای با استفاده از ضرایب واکنش عملکرد بومی در ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، بخش آبیاری و فیزیک خاک، موسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

2 استادیار پژوهش، مؤسسه تحقیقات فنی و مهندسی کشاورزی، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج،

3 استادیار، گروه علوم و مهندسی آب، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران.

4 عضو هیئت علمی بخش آبیاری و زهکشی مؤسسه تحقیقات فنی و مهندسی کشاورزی، سازمان تحقیقات، آموزش و ترویج کشاورزی

چکیده

با توجه به منابع محدود آب و مشکل توزیع آب در شبکه‌های آبیاری و زهکشی و عدم انطباق نیاز آبیاری گیاه با دوره‌های آبیاری موجود یک تنش آبی به گیاهان به‌طور سیستماتیک وارد می‌شود. ازاین‌رو در این مطالعه دو تابع تولید Raes (2004) و Tafteh et al (2013) با استفاده از ضرایب حساست گیاه پیشنهادشده توسط Tafteh et al (2014a) برای ذرت مورد ارزیابی قرار گرفت. برای این منظور عملکرد دانه دو رقم ذرت دانه­ای 500 و 302 در دو سال کشت با تیمارهای آبیاری 100، 75 و 50 درصد نیاز آبی برداشت و با استفاده از دو تابع تولید مطرح‌شده ارزیابی شد. نتایج نشان داد تابع تولیدTafteh  در تعیین عملکرد دو رقم 500 و 320 به‌طور متوسط با مقدار ریشه مربعات میانگین خطا حدود 562 کیلوگرم در هکتار، ریشه مربعات میانگین خطای نرمال حدود 8 درصد و میانگین انحراف خطا حدود 168 کیلوگرم در هکتار بسیار خوب عمل کرده است. همچنین شاخص توافق حدود 95/0 و شاخص کارای مدل حدود 83/0 به دست آمد. این نتایج آماری نشان داد که توابع مطرح‌شده کارایی بالای در تعیین عملکرد هر دو رقم دارند. بررسی تفکیک‌شده این دو رقم نیز نشان داد که رقم 302 دارای عملکرد کم‌تر و در شرایط کم‌آبی ضرایب حساسیت آن به گیاه به‌ویژه در دوره میانی رشد بیش‌تر از رقم 500 می‌باشد. لذا رقم 500 نسبت به رقم 302 عملکرد بالاتری دارد و در شرایط کم‌آبی ضرایب حساسیت آن کمتر بوده و مقاومت بیشتری در تنش آبی از خود نشان می‌دهد. ضرایب حساسیت رقم 302 در دوره‌های اولیه، میانی و انتهایی رشد به­ترتیب برابر با 5/0 ، 4/1 و 8/0 تعیین گردید که با مقادیر پیشنهادی متفاوت است. لذا لازم است ارقام پیشنهادی در شرایط کم‌آبی با استفاده از توابع تولید مورد ارزیابی قرارگیرند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation Of Production Functions In Estimating Two Varieties Of Corn Yield With Native Yield Response Factor In The Iran

نویسندگان [English]

  • Arash Tafteh 1
  • Mohammad Mehdi Nakhjavani Moghadam 2
  • Aslan Egdernezhad 3
  • Saloome Sepehri 4
1 Assistant professor, Department of irrigation and soil physics, Soil and Water Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
2 Assistant professor of Irrigation and Drainage Engineering, Agricultural Engineering Research Institute (AERI), Agricultural Research, Education and Extension Organization
3 Assistant Professor, Department of Water Sciences and Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.
4 Assistant Professor of Irrigation and Drainage Engineering, Agricultural Engineering Research Institute (AERI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
چکیده [English]

Due to limited water resources and the problem of water distribution in irrigation and drainage networks and non-compliance of plant irrigation needs with existing irrigation periods, a water stress is introduced to the plants systematically. Therefore, in this study, two production functions of Raes (2004) and Tafteh et al. (2013) were evaluated for corn using the yield response factor suggested by Tafteh et al. (2014a). For this purpose, two varieties of corn 500 and 302 were harvested in two years of cultivation with irrigation treatments of 100, 75 and 50% of water requirement and their yield values were evaluated using the proposed functions. The results showed that both production functions in determining corn yield of 500 and 320 together with the amount of root mean square error is about 591 kg / ha, the normal root mean square error is about 8% and the mean bias error is about 25 kg / ha. The agreement index was about 0.94 and the efficiency factor index of the model was about 0.81. These statistical results showed that the proposed functions are highly effective in determining the yield of both varieties. A separate study of these two varieties also showed that the 302 cultivar has lower yield and in water shortage conditions, its sensitivity to the plant, especially in the middle period of growth, is higher than the 500 cultivar. Therefore, cultivar 500 has a higher yield than cultivar 302 and in water shortage conditions, its sensitivity coefficients are less and it shows more resistance to water stress. Yield response factor of cultivar 302 in the initial, middle and final stages of growth were determined to be 0.5, 1.4 and 0.8, respectively Which is different from the suggested values.. Therefore, it is necessary to evaluate the proposed cultivars in water stress conditions using production functions.

کلیدواژه‌ها [English]

  • Grain corn
  • Production Function
  • Yield response factor
  • water stress
Ansari, H., Mirlatifi, S.M., and Farshi, A. (2006). The effect of low irrigation on yield and water use efficiency of early maize  .Iranian Journal of Soil Research, 20(2), 338-348.
Dagdelen, N., E. Yilmaz, F. Sezgin, and T. Gurbuz. (2006). Water-yield relation and water use efficiency  of cotton (Gossypium hirsutum L.) and second crop corn (Zea mays L.) in western Turkey. Agric. Water Manage. 82(1),63-85.
Doorenbos, J. and A. H. Kassam (1979)."Yield response to Water." irrigation and drainage. Paper No. 33, Food and Agricultural Organization. Rome. Italy.
Ebrahimipak, N., Tafteh, A., Asadi Kapourchal, S., Egdernezhad, A. (2020). Evaluation of production functions to estimate potato yield in different irrigation treatments. Iranian Journal of Irrigation & Drainage, 13(6), 1721-1732.
Ebrahimi Pak, N., Tafteh, A., Babazadeh, H. (2014). Evaluation of Alfalfa crop production functions to determine Alfalfa yields in different level of irrigation in Qazvin region. Iranian Journal of Soil and Water Research, 45(2), 135-145. doi: 10.22059/ijswr.2014.51615.
Ebrahimipak, N., Tafteh, A. (2017). Determination of yield - water use function for sugar beet in Qazvin. Journal of Sugar Beet, 33(1), 63-47. doi: 10.22092/jsb.2017.1319.
Estakhr, A.,  Dehghanpour, Z. (2010). Determination of the Suitable Planting Date for New Early Maturity Maize Hybrids in Second Cropping in Temprate Regions in Fars Province. Seed and Plant Production Journal, 26(2), 169-191. doi: 10.22092/sppj.2017.110402.
FAO, (2016). FAO STAT Database - Agricultural production. http://apps.fao.org. Food and Agriculture Organization of the United Nations, Rome.
Greaves, Geneille & Wang, yu-min. (2017). Yield response, water productivity, and seasonal water production functions for maize under deficit irrigation water management in southern Taiwan. Plant Production Science. 1-13. 10.1080/1343943X.2017.1365613.
Jensen, J.W. (1968). Water consumption by agricultural plants. In: Kozlowski, T. (Ed.), Water Deficit and Plant Growth. 2,1–22.
Jorooni, E., Alinejadian Bidabadi, A., Maleki, A. (2017). Determination of crop water production function and response of total dry matter and grain yield to deficit irrigation in Maize. Water and Irrigation Management, 7(2), 241-256. doi: 10.22059/jwim.2017.235685.546
Moberly JT, Aiken RM, Lin X, Schlegel AJ, Baumhardt RL, Schwartz RC, (2017). Crop water production functions of grain sorghum and winter wheat in Kansas and Texas. J Contem Water Res Educ 162: 42-60. https://doi.org/10.1111/j.1936-704X.2017.03259.x
Panda, R. K., S. K. Behera, and P. S. Kashyap.(2004). Effective management of irrigation water for maize  under stressed conditions. Agric. Water. Manage. 66(3),181-203.
Raes. D. (2004). Budjet: a soil water and salt balance model. Refrence Manual. Version 6.0 (http://www.iupware.be and select downloads and next software. last updated June 2004).
Raes, D., S. Greets., E. Kipkorir., J. Wellens and Sahli, A.(2006). Simulation of yield decline as a result of water stress with a robust soil water balance model. Agric.Water Manage. 81,335-357.
Rao, N. H., Sarma, P. BS. and Chander, S. (1988). A simple dated water production function for use in irrigated agriculture. Agricultural Water Management, 13, 25–32.
 
Sarayi, M., Parsinejad, M., Liaghat, A.M. and Babazadeh, H.  (2012). Determining water requirement and soybean crop coefficients in different growth stages. Applied Field Crops Research, 25(4), 112-121.
saeidi, R., sotoodehnia, A., ramezani etedali, H., kaviani, A., nazari, B. (2018). Study of Effect of water salinity and soil fertility stresses on evapotranspiration of Maize. Iranian Journal of Soil and Water Research, 49(4), 945-954. doi: 10.22059 /ijswr .2018. 247876.667815
Shirshahi, F., Babazadeh, H., EbrahimiPak, N.A. Khaledian, M. (2020). Sustainable optimization of regional agricultural water use by developing a two-level optimization model, Arabian Journal of Geosciences. 10.1007/s12517-020-5175-5, 13, 4.
Tafteh, A., Babazadeh, H., EbrahimiPak, N.A., and F. Kaveh . (2013). Evaluation and improvement of crop production functions for simulation winter wheat yields with two types of yield response factors. J.Agric. Sci. 5 (3),111-122.
Tafteh, A., ebrahimipak, N. (2018). Evaluation of production functions to estimate rapeseed yield in different Interval times. Journal of Soil and Water Resources Conservation, 7(3), 103-113.
Tafteh, Arash & Babazadeh, Hossein & EbrahimiPak, N.A. & Kaveh, Feridon. (2014a). Determine yield response factors of important crops by different production functions in Qazvin Plain. Ecology, Environment and Conservation. 20, 415-422
Tafteh A, Babazadeh H, EbrahimiPak NA, Kaveh F.(2014b). Optimization of irrigation water distribution using the MGA method and comparison with a linear programming method. Irrigation and drainage 63 (5), 590-598.
Talarico L., Reniers G., Sörensen K., Springael J. (2015). Intelligent Systems in Managerial Decision Making. In: Kahraman C., Çevik Onar S. (eds) Intelligent Techniques in Engineering Management. Intelligent Systems Reference Library, vol 87. Springer, Cham.
Zhao, Funian & WANG, Runyuan & Zhang, Kai & LEI, Jun & Yu, Qiang. (2019). Predicting spring wheat yields based on water use-yield production function in a semi-arid climate. Spanish Journal Of Agricultural Research. 17. e1201. 10.5424/sjar/2019172-14699.