بررسی گردوخاک در گستره ایران توسط مدل باز تحلیل MERRA-2 NASA/(دوره آماری 2017-2007)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه محیط‌زیست، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

2 گروه شیمی جو و آلودگی هوا، پژوهشکده هواشناسی ،پژوهشگاه هواشناسی و علوم جوی، تهران، ایران

3 گروه آبشناسی، پژوهشکده هواشناسی ، پژوهشگاه هواشناسی و علوم جوی، تهران، ایران

چکیده

مناطق مختلف ایران تحت تأثیر گردوخاک‌های داخلی و یا فرامرزی هستند. با استفاده از داده‌های ماهواره می‌توان توزیع زمانی و مکانی و منشأ شکل‌گیری گردوخاک را بررسی نمود. هدف از مطالعه حاضر تحلیل غلظت گردوخاک سطحی، گردوخاک در ستون هوا و عمق نوری هواویزها با استفاده از مدل MERRA-2 و ماهواره آکوا در مناطق گردوخاک خیز ایران بود. داده در دوره 2007 تا 2017 تهیه و شکل‌ها توسط نرم‌افزار Grads و OriginPro ترسیم شد. یافته‌های تحقیق سه کانون گردوخاک فرامرزی در غرب، شرق و شمال شرق ایران و دو کانون داخلی در دشت کویر و جنوب شرق ایران را نشان داد. کانون‌های فرامرزی جنوب شرق عراق و کویت بیشترین غلظت گردوخاک سطحی را دارد. در آبادان بیشترین غلظت گردوخاک سطحی با 552 () در فصل تابستان، گردوخاک در ستون هوا 709 () و عمق نوری هواویزها MERRA-2 با 58/0 در فصل بهار به دست آمد. ضریب همبستگی بین گردوخاک سطحی و گردوخاک ستون هوا در کانون­های داخلی شامل طبس، کهنوج، خور بیابانک و نیک­شهر با 94/0، 93/0، 89/0، 89/0 به دست آمد که می‌تواند نشان‌دهنده اثر شرایط محلی در توسعه گردوخاک باشد. تغییر زمانی گردوخاک ستون هوا در سه ایستگاه بوشهر، آبادان و اهواز بیشترین روند کاهشی را با ضریب 035/0- و 034/0- نشان می‌دهد که نشان­دهنده کاهش اثر کانون­های فرامرزی گردوخاک است. در توزیع زمانی، سال‌های 2008 و 2012 با شدیدترین و فراگیرترین گردوخاک‌ها در گستره ایران تعیین شد. در توزیع ماهانه گردوخاک بیشینه  غلظت آن در ماه‌های آوریل و جولای 2008، مه 2012 و جولای 2016 در اهواز به دست آمد.
تغییر زمانی گردوخاک ستون هوا در سه ایستگاه بوشهر، آبادان و اهواز بیشترین روند کاهشی را با ضریب 035/0- و 034/0- ‏نشان می‌دهد که نشان دهنده کاهش اثر کانون ها فرامرزی گردوخاک است.‏
در توزیع زمانی، سال‌های 2008، 2012 با شدیدترین و فراگیرترین گردوخاک‌ها در گستره ایران تعیین شد. در توزیع ماهانه ‏گردوخاک بیشینه آن درماه‌های آوریل و جولای 2008، مه 2012 و جولای 2016 در اهواز به دست آمد.‏

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Dust Investigation by MERRA-2 Model in Iran: (during 2007- 2017)

نویسندگان [English]

  • Elham Mobarak Hassan 1
  • Abbas Saadatabadi 2
  • Ebrahim Fattahi 3
1 Department of Environment, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
2 Atmospheric Chemistry and Air Pollution Group, Meteorology Institute, Atmospheric Science and Meteorological Research Center ‎‎(ASMERC), Tehran, Iran
3 ‎: Hydrometeorology Group, Meteorology Institute, Atmospheric Science and Metrological Research Center (ASMERC), Tehran, ‎Iran
چکیده [English]

Different regions of Iran are affected by internal or external dust sources. Satellite data can be ‎used to examine the temporal and spatial distribution and detected the source of dust. The aim ‎of this study was to analyze the concentration of surface dust, dust in air column and aerosol ‎optical depth (AOD) using MERRA-2 model and Aqua satellite data in Iran. Data were prepared ‎between 2007 and 2017 and the figures were plotted by Grads and OriginPro software. The ‎research findings showed three cross-border dust source including western, eastern and ‎northeastern Iran and two internal area in the desert plain and southeastern Iran. The dust ‎source located in southeastern Iraq and Kuwait have the highest concentration of surface dust. ‎In Abadan, the highest concentration of surface dust with 552 (μg⁄m^3 ) in summer, dust in ‎air column 709 (mg⁄m^2 ) in spring and the AOD of MERRA-2 with 0.58 in the spring took ‎placed. The correlation coefficient between surface dust and air column dust was obtained in ‎internal area including Tabas, Kahnooj, Khor Biabank and Nikshahr with 0.94 and 0.93, 0.89 and ‎‎0.89, which can indicate the effect of local conditions on development. Time series of air ‎column dust in three stations of Bushehr, Abadan and Ahvaz shows the highest decreasing line ‎trend with -0.05 and -0.035, which shows the decrease in the effect of dust external dust ‎sources.In the monthly distribution, the years 2008 and 2012 were determined by the most ‎severe and widespread dust in Iran. The maximum dust values was obtained in April and July ‎‎2008, May 2012 and July 2016 in Ahvaz.‎

کلیدواژه‌ها [English]

  • Dust concentration
  • MERRA-2 Model
  • Aerosol optical depth (AOD)
  • Aqua sattelite
Alam, K., Qureshi, S., and Blaschke, T. (2011). Monitoring spatio-temporal aerosol patterns over Pakistan based on MODIS, TOMS and MISR satellite data and a HYSPLIT model. Atmospheric environment, 45(27), 4641-4651
Abdi Vishkaee, F., Flamant, C., Cuesta, J., Flamant, P., and Khalesifard, H. R. (2011). Multiplatform observations of dust vertical distribution during transport over northwest Iran in the summertime. Journal of Geophysical Research: Atmospheres, 116(D5).‏
Al-Jumaily, K. J., and Ibrahim, M. K. (2013). Analysis of synoptic situation for dust storms in Iraq. Int. J. Energ. Environ, 4(5), 851-858.
Alijani, B. and Raisipour, K. (2011). Statistical analysis, Synoptic of dust storms in south east of Iran (Case study: Sistan region), Studies Geographical Drylands, 2(5), 107-132. (In Farsi)
Aloysius, M., Mohan, M., Suresh Babu, S., Parameswaran, K., and Krishna Moorthy, K. (2009). Validation of MODIS derived aerosol optical depth and an investigation on aerosol transport over the South East Arabian Sea during ARMEX-II. In Annales Geophysicae (Vol. 27, No. 6, pp. 2285-2296). Copernicus GmbH
Arjmand, M., Rashki, A. and Sergazi H. (2018). Spatial and temporal monitoring of dust phenomena using satellite data in southeastern Iran, with emphasis on Jazmourian region. Geographical Information Journal (Sepehr), 27 (106), 153-168. (In Farsi)
Asadi Oskouie, E., Negah, S. and Mojtahedi, F.(2013). Transported and extended Mechanism of dust in the South West Coast of the Caspian Sea. In: Proceedings of  Second International Conference on Plant, Water, Soil and Air Modeling, May 2013, Kerman University of Technology and Advanced Technology, Kerman,Iran. (In Farsi)
Bahiraei, H., Ayazi, M. H., Rajaei, M. and Ahmadi, H. (2011). Synoptic Statistical Analysis of Dust Occurrence in Ilam Province. Journal of New Attitudes in Human Geography, 4, 47-67. (In Farsi)
Bayat, F. and KhalesiFard, H.R. (2018). Evaluation of storm events over the Persian Gulf and Oman Sea using the CALIPSO Space Liar measurements. In: Proceedings of 24th Optics and Photonics Conference, Feb 2018. University of Shahrkord. Shahrkord, Iran. (In Farsi)
Bertina, H., Sayyad, G.A., Matinfar, H.R. and Hojjat, S. (2014). Temporal-spatial distribution of atmospheric suspended particles in western Iran based on MODIS spectral data Journal of Soil and Water Conservation Research, 4(21).119-137 (In Farsi)
Boroughani, M., Moradi, H. and Zanganeh, A. (2016). Analysis of Dust Occurrence and Its Zoning in Khorasan Razavi Province, Journal of Environmental Erosion Research, 5(4), 45- 57. (In Farsi)
Buchani, M.H.  and Fazeli, D. (2012). Environmental Challenges and Their Consequences and Its Consequences in Western Iran. Quarterly Journal of Policy Making, 2 (3), 125-145. (In Farsi)
Dadashi-Roudbari, A., Ahmadi, M., & Shakiba, A. (2020). Seasonal Study of Dust Deposition and Fine Particles (PM2.5) in Iran Using MERRA-2 Data. Iranian Journal of Geophysics, 43-59.
Daniali, M., Mohammadnejad, B.A. and Karimi, N. (2018). Spatial Analysis of Khuzestan Province Dust Satellite Images. Remote sensing and GIS in natural resources. 9 (1), 58-73. (In Farsi)
Dehdarzadeh, M. and Salahi, b. (2010). Statistical and Analytical Investigation of Synoptic Patterns of Dust formation in Fars Province from 1993 to 2002, In: Proceedings of the Second National Conference on Wind Erosion and Dust Storms, 27-28 Feb., Yazd University. Yazd,Iran. (In Farsi)
Dostan, R. (2017). Spatial Analysis of Dust in Northeast Iran, Journal of Geography and Regional Development, 14(2), 67-90. (In Farsi)
Draxler, R. R., Gillette, D. A., Kirkpatrick, J. S., & Heller, J. (2001). Estimating PM10 air concentrations from dust storms in Iraq, Kuwait and Saudi Arabia. Atmospheric Environment, 35(25), 4315-4330.
Eltahan, M., Magooda, M., & Alahmadi, S. (2019). Spatiotemporal Assessment of SO 2, SO 4 and AOD from over MENA Domain from 2006-2016 Using Multiple Satellite and Reanalysis MERRA-2 Data. Journal of Geoscience and Environment Protection, 7(04), 156.‏
Emadi, L., Pouyanfar, N. and Samanipour, A. (2016). Investigation of Local dust Production Process in source (Case Study of Yazed Airport Synoptic Stage), In: Proceedings of 5th Regional Climate Change Conference, Feb 2016, Tehran. Iran. (In Farsi)
Falahzazouli, M., Vafaiejnejad, A., Kheirkhahzarakesh, M. M. and Ahmadidehka F. (2014). Synoptic Monitoring and Analysis of Dust Phenomena Using Remote Sensing and GIS Case Study: Dust June 18, 2012 . Geospatial Information Research (Sepehr). 23 (91), 70-79. (In Farsi)
Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C., & Zhao, M. (2012). Global‐scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Reviews of Geophysics, 50(3).
Goodarzi, M., Hosseini, S. A. and Ahmadi, H. (2018).  Investigation of Time Distribution of Days Associated with Dust in West and Southwestern Iran. Iranian Watershed Management Science, 11(39), 1-10. (In Farsi)
Goudie, A. S., and Middleton, N. J. (2006). Desert dust in the global system. Springer Science & Business Media.‏
Grousset, F. E., & Biscaye, P. E. (2005). Tracing dust sources and transport patterns using Sr, Nd and Pb isotopes. Chemical Geology, 222(3-4), 149-167.
Hamidianpour, M., Mofidi, A., Najar, Saliqah, M, and Alijani, B. (2018). The Role of Topography in Simulating Sistan Wind Structure. Geographical Sciences Applied Research, 43(16), 25-53. (In Farsi)
He, L., Lin, A., Chen, X., Zhou, H., Zhou, Z., & He, P. (2019). Assessment of MERRA-2 surface PM2.5 over the Yangtze River Basin: Ground-based verification, spatiotemporal distribution and meteorological dependence. Remote Sensing, 11(4), 460.‏
Hosseinisadr, A., Mohammadi, G.H., Hosseinisadr, M. (2014). Analysis of Meteorological Phenomena in Tabriz Meteorological Station during the Period 1951 to 2011, Niwar, 84, 3-10. (In Farsi)
Kaskaoutis, D. G., Kharol, S. K., Sinha, P. R., Singh, R. P., Badarinath, K. V. S., Mehdi, W., & Sharma, M. (2011). Contrasting aerosol trends over South Asia during the last decade based on MODIS observations. Atmospheric Measurement Techniques Discussions, 4(4), 5275-5323.‏
Karami, F. (2009). Convergence of pressure systems and dust storms in Khuzestan province, MA dissertation, Department of Geography, Razi University. Iran. (In Farsi)
Kaufman, Y. J., Tanré, D., & Boucher, O. (2002). A satellite view of aerosols in the climate system. Nature, 419(6903), 215
Khushkish, A., Alijani, B. and Hejazizadeh, Z. (2011). Synoptic Analysis of Dust in Lorestan Province. Journal of Applied Geosciences Research, 21, 91-110. (In Farsi)
Klingmüller, K., Pozzer, A., Metzger, S., Stenchikov, G. L., & Lelieveld, J. (2016). Aerosol optical depth trend over the Middle East.‏ Atmos. Chem. Phys., 16, 5063–5073.
Kishcha, P., Wang, S. H., Lin, N. H., Da Silva, A., Lin, T. H., Lin, P. H., ... & Alpert, P. (2018). Differentiating between local and remote pollution over Taiwan.‏
Koçak, M., Nimmo, M., Kubilay, N., & Herut, B. (2004a). Spatio-temporal aerosol trace metal concentrations and sources in the Levantine Basin of the Eastern Mediterranean. Atmospheric Environment, 38(14), 2133-2144.‏
Koçak, M., Kubilay, N., & Mihalopoulos, N. (2004b). Ionic composition of lower tropospheric aerosols at a Northeastern Mediterranean site: implications regarding sources and long-range transport. Atmospheric Environment, 38(14), 2067-2077.‏
Kordjezi, M., Dadashi, N. and Rahmannia, M. (2017). Investigating the Factors Causing Dust Occurrence in Golestan Province. In: Proceedings of Second National Conference on Coastal Water Resources Management, Sari University of Agricultural Sciences and Natural Resources.12 Oct, Sari, Iran.  (In Farsi)
Koster, R. D., McCarty, W., Coy, L., Gelaro, R., Huang, A., Merkova, D., ... & Wargan, K. (2016). MERRA-2 input observations: Summary and assessment.‏
Kubilay, N., and Saydam, A. C. (1995). Trace elements in atmospheric particulates over the Eastern Mediterranean; concentrations, sources, and temporal variability. Atmospheric Environment, 29(17), 2289-2300.‏
Lashkari, Ha, Keikhosravi, Gh, (2008), Synoptic Statistical Analysis of Dust Storms in Khorasan Razavi Province, 1993-2005, Journal of Natural Geography Research, No. 65, pp. 17-33.
Li, H.; Xiong, L.; & D. Zhuang, 2003. Research Progress and Future Development of Remote Sensing Monitoring on Sand-dust Disaster in China, Progress In Geography, 22(1), 45- 52.
Li, X., and S. Weidong., (2009). Dust storm detection based on MODIS data. Liaoning Technology University, No. 47, Zhonghua Road, Fuxin, Liaoning,. -172.17.
Luo, 2003 Luo, J.; Fan, Yida.; & P. Shi, 2003. Information- comparable method of monitoring the intensity f dust storm by multi-source data of remote sensing, Journal of Natural Disasters, 12(2), 28-34.
Mahanama, S. P., Koster, R. D., Walker, G. K., Takacs, L. L., Reichle, R. H., De Lannoy, G., ... & Suarez, M. J. (2015). Land boundary conditions for the goddard earth observing system model version 5 (GEOS-5) climate modeling system: Recent updates and data file descriptions
Mallet, M., Solmon, F., Roblou, L., Peers, F., Turquety, S., Waquet, F.,... & Torres, O. (2017). Simulation of optical properties and direct and indirect radiative effects of smoke aerosols over marine stratocumulus clouds during summer 2008 in california with the regional climate model regcm. Journal of Geophysical Research: Atmospheres, 122(19), 10-312.‏
Mehrshahi, D. and Nekunam, Z. (2010). Statistical Study of Dust Phenomena and Pattern Analysis Dusty winds in Sabzevar city. Geography, 22, 83 -104. (In Farsi)
Miri, M. (2012). Statistical-Synoptic Analysis of Dust Occurrence in the Western Half of Iran, End M.Sc. Letter, Faculty of Geography, University of Tehran. (In Farsi)
Moridnejad, A., Karimi. N. and Ariya, P.A. (2015). A new inventory for Middle East dust source points.
Environmental Monitoring and Assessment, 187(9), 582-592. (In Farsi)
Molod, A., Takacs, L., Suarez, M., & Bacmeister, J. (2014). Development of the GEOS-5 Atmospheric General Circulation Model: Evolution from MERRA to MERRA2.‏
Molod, A., Takacs, L., Suarez, M., Bacmeister, J., Song, I. S., & Eichmann, A. (2012). The GEOS-5 atmospheric general circulation model: Mean climate and development from MERRA to Fortuna.‏
  Nabavi, Saeid., Morad, HR., & Shrifikia, M.,(2019). Evaluation of dust storm temporal distribution and the relation of the effective factors with the frequency of occurrence in Khuzestan Province from 2000 to 2015 Scientific - Research Quarterly of Geographical Data (SEPEHR),111(28), 191-203.(In Farsi)
Namdari, S., Valizade, K., Rashki, A. and Sarraf, B.S. (2016). Spatio-temporal analysis of MODIS AOD over Western part of Iran. Arabian Journal of Geosciences, 9(3), 191-199. (In Farsi)
Ogren, J. A. (1995). A systematic approach to in situ observations of aerosol properties. Aerosol forcing of climate, 215-226.
Omidvar, K. and Nekunam. Z. (2009). Application of windrose and winddust in dust analysis and Determination of Seasonal patterns of Winds with this Phenomenon: A Case Study (Sabzevar City). Natural Geography Research, 76, 85 – 10. (In Farsi)
Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E., & Gill, T. E. (2002). Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Reviews of geophysics, 40(1), 2-1.‏
Pirbavaghar, M., Rajabpourahmati, M., Darvishsefat, A. A. and Ostavari, A. (2014). Assessment Remote for GIS Managers. Aronov A. Publications by University of Tehran. (In Farsi)
Prasad, A. K., Singh, S., Chauhan, S. S., Srivastava, M. K., Singh, R. P., & Singh, R. (2007). Aerosol radiative forcing over the Indo-Gangetic plains during major dust storms. Atmospheric Environment, 41(29), 6289-6301.
Rashki, A., Kaskaoutis, D. G., Eriksson, P. G., Rautenbach, C. D. W., Flamant, C., & Vishkaee, F. A. (2014). Spatio-temporal variability of dust aerosols over the Sistan region in Iran based on satellite observations. Natural hazards, 71(1), 563-585.
Rashki, A. and Mirshekar,R. (2011). Investigation of Temporal Changes in Dust Particle Concentration in Zahedan Urban Space, In: Proceedings of Second National Conference on Wind Erosion and Dust Storms, 17 Feb 2011,Yazd University, Yazd, Iran. (In Farsi)
Rashno, A.l. (2009). Dust Occurrence in Khuzestan Province, Precipitation Quarterly, Internal Journal of Khuzestan Meteorological Office, 16-23. (In Farsi)
 Rizza, U., Mancinelli, E., Morichetti, M., Passerini, G., & Virgili, S. (2019). Aerosol Optical Depth of the Main Aerosol Species over Italian Cities Based on the NASA/MERRA-2 Model Reanalysis. Atmosphere, 10(11), 709.‏
Sahraei, J. MobarakHassan, E., Mohamadi, N., (2020). The Effect of Zagros Mountain Range on Dust Storm using WRF/Chem Model, Geography and Environmental Hazards, 32(8): DOI: https://doi.org/10.22067/geo.v8i4.82034,(In Farsi)
Shahkoui, E.  and Rahmani, T.(2019). Aerosol Risk Assessment in Northwest Iran, Journal of Spatial Planning (Geography), 9(2), 57-80. (In Farsi)
Shamshiri, S., Jafari, R., Soltani, S., and Ramazani, N. (2014). Detection and Zonal of Kermanshah Province dust Using MODIS Satellite Images, Applied Ecology. 3(8). 29-41. (In Farsi)
 Song, C. K., Ho, C. H., Park, R. J., Choi, Y. S., Kim, J., Gong, D. Y., & Lee, Y. B. (2009). Spatial and seasonal variations of surface PM10 concentration and MODIS aerosol optical depth over China. Asia-Pacific Journal of Atmospheric Sciences, 45(1), 33-43.
Trigo, I. F.; Davies, T. D.; & G. R. Bigg, 1999. Objective climatology of cyclones in the Mediterranean region, J. Clim, 12, 1685–1696.
     Wang, J., and Christopher, S. A. (2003). Intercomparison between satellite‐derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies. Geophysical research letters, 30(21).
Wu, W. S., Purser, R. J., & Parrish, D. F. (2002). Three-dimensional variational analysis with spatially inhomogeneous covariances. Monthly Weather Review, 130(12), 2905-2916.‏
Zahrabi, H.  and Ezzatian, V. (2015). Case Study of aerosol in Isfahan Province Using Satellite and observation Data. In: Proceedings of First International Conference on Iranian Natural Hazards and Environmental Crises strategies and Challenges, 14 Sep, Ardebil, Iran (In Farsi)
Zarasvandi, A., Carranza, E., Moore, F. and Rastmanesh, F. (2011). Spatio-temporal occurrences and mineralogical–geochemical characteristics of airborne dusts in Khuzestan Province (southwestern Iran). Journal of Geochemical Exploration, 111(3), 138-151. (In Farsi)
Zhang, D. F., Zakey, A. S., Gao, X. J., Giorgi, F., & Solmon, F. (2009). Simulation of dust aerosol and its regional fe backs over East Asia using a regional climate model. Atmospheric Chemistry and Physics, 9(4), 1095-1110.