ارزیابی مدل WRF برای شبیه‌سازی بارش و پیش‌بینی سیلاب در حوضه آبریز کارون 4

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی منابع آب، گروه علوم مهندسی آب، دانشکده کشاورزی و منابع طبیعی، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

2 استادیار، گروه علوم مهندسی آب، دانشکده کشاورزی و منابع طبیعی، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

3 گروه مهندسی منابع آب، دانشکده کشاورزی و منابع طبیعی، دانشگاه آزاد اسلامی واحد اهواز، اهواز، ایران

4 استادیار، گروه مهندسی محیط زیست، دانشکده کشاورزی و منابع طبیعی، دانشگاه آزاد اسلامی، واحد اهواز، اهواز، ایران

چکیده

در این تحقیق مقادیر ساعتی بارش و دمای هوا در حوضه کارون 4 در جنوب غربی ایران با مدل عددی WRF، شبیه سازی شد تا دقت مدل در پیش­بینی سیل در این حوضه ارزیابی گرددد. واقعه سیل در مارس 2016 انتخاب شد. برای شرایط مرزی و اولیه مدل از داده‌های جهانی با تفکیک 75/0 درجه استفاده شده است. مدل WRFبا استفاده از هشت پیکربندی متفاوت، شامل یک طرح­واره همرفتی، دو طرح­واره لایه مرزی سیاره‌ای، دو طرح­واره خُردفیزیک، یک طرح­واره لایه سطحی و دو طرح­واره تابش موج کوتاه اجرا شد تا پیکربندی مناسب برای شبیه­سازی دما و بارش به دست آید. نتایج نشان داد که در شبیه­سازی بارش ساعتی ترکیب طرح­واره MYJ لایه مرزی با دیگر طرح­واره­های خردفیزیک و تابش کوتاه نسبت به طرح­واره YSU نتیجه بهتری به دست می­دهد. بهترین مقدار IOA (ضریب تطابق) بین بارش مشاهداتی و برآورد شده مدل  به ترتیب 77/0، 76/0، 74/0 و 52/0 در شهرکرد، سامان، کوهرنگ و لردگان با ترکیب لایه مرزی MYJ، خردفیزیک Lin  و تابش کوتاه Dudhia  به دست آمد. در حالی که در شبیه­سازی دمای هوای ساعتی، ترکیب طرح­واره لایه مرزی YSU با دیگر طرح­واره­ها عملکرد بهتری داشته است. به طوری که با این ترکیب بیشترین ضریب تطابق (47/0) بین دمای ساعتی برآورد مدل و مشاهداتی به دست آمده است. بارش برآورد شده توسط پیکربندی لایه مرزی MYJ، خردفیزیک Lin، تابش کوتاه GODDARD و MYJLG در پیش­بینی دبی اوج بهتر از دیگر طرح واره­ها عمل نموده است به طوری که کمترین ضریب ناش (293/0-) و کمترین RMSE (37) با این ترکیب به دست آمد. بنابراین به نظر می‌رسد ترکیب طرح­واره لایه مرزی MYJ، طرح­واره خردفیزیک ابر Lin و طرح­واره تابشی GODDARD در برآورد بارش و دما و در نتیجه پیش‌بینی سیل مارس 2016 در حوضه کارون 4 بهترین عملکرد را داشته­اند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of WRF Model for Simulation of Precipitation and Flood Forecasting in Karun 4 Basin

نویسندگان [English]

  • emadeddin shirali 1
  • ALIREZA NIKBAKHT SHAHBAZI 2
  • Hosein Fathian 3
  • narges zohrabi 2
  • Elham Mobarak Hassan 4
1 PhD Student of Water Resources Engineering, Water Science Engineering, Agricultural and Natural Resources College, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
2 Assistant Professor, Department of Water Resources Engineering, Agricultural and Natural Resources College, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
3 Department of Water Resources Engineering, Faculty of Agriculture and Natural Resources, Ahvaz Branch, Islamic Azad University (IAU), Ahvaz, Iran.
4 Assistant Professor, Department of Environmental Engineering, Agricultural and Natural Resources College, Islamic Azad University, Ahvaz Branch, Ahvaz, Iran
چکیده [English]

In this study, hourly values ​​of precipitation and air temperature in Karoon 4 basin in southwestern of Iran were simulated with WRF numerical model to evaluate the accuracy of the model for flood prediction. The flood event was selected in March 2016. For global boundary conditions of the model, global data with a resolution of 0.75 were used. The WRF model was implemented using eight different configurations, including a convective schema, two planetary boundary layer schemes, two microphysical schemes, a surface layer schema, and two shortwave radiation schemes to obtain a suitable configuration for simulating temperature and precipitation. The results showed that in the simulation of hourly precipitation, the combination of MYJ boundary layer design with other micro-physics and short-ray projections yields better results than YSU schema. The best values of IOA (matching coefficient) between observed and estimated precipitation of the model was 0.77, 0.76, 0.74 and 0.52 in Shahrekord, Saman, Koohrang and Lordegan, respectively, by combining MYJ boundary layer, Lin physics and Dudhia short radiation. While in simulating hourly air temperature, the YSU boundary layer schema combination with other schema showed better performance. So that with this combination, the heighest conformity coefficient (0.47) was obtained between the estimated and observed hourly temperature. The estimated rainfall adjusted by MYJ boundary layer configuration, Lin physics, GODDARD short radiation and MYJLG has performed better prediction for peak dischage than the other schemas, so that the lowest Nash coefficient and RMSE were -0.293 and 37 respectively, with this combination. Therefore, the combination of MYJ boundary layer schema, Lin cloud microphysics schema, and GODDARD radiation schema appear to be the best for estimation of precipitation and temperature and consequently for prediction of the March 2016 flood in the Karun 4 basin.

کلیدواژه‌ها [English]

  • Precipitation Simulation
  • Temperature Simulation
  • WRF Model
  • Flood Forecast
Azadi, M., Rezazadeh, P., Mirzaei, and Vakili, G., (2004). Numerical Prediction of Winter Systems on Iran: A Comparative Study of Physical Parameterization, 8th Fluid Dynamics Conference. (In Farsi)
Benjamin, S. G., Devenyi, D., Weygandt, S. S., Brundage, K. J., Brown, J. M., Grell, G. A., Kim, D., Schwartz, B. E., Smirnova, T. G., Smith, T. L. and Manikin, G. S., (2004), An hourly assimilation–forecast cycle: The RUC. Mon. Wea. Rev., 132, 495–518.
Chawla, I., Osuri, K.K., Mujumdar, P.P. and Niyogi, D., (2018). Assessment of the Weather Research and Forecasting (WRF) model for simulation of extreme rainfall events in the upper Ganga Basin. Hydrology & Earth System Sciences, 22(2).
Evans, J. P. and Marie and E. FeiJi., (2011). Evaluating the performance of a WRF physics ensemble over South-East Australia. Springer Link, 39, 1241–1258.
Febri, D.H., Hidayat, R. and Hanggoro, W., (2016). Sensitivity of WRF-EMS model to predict rainfall event on wet and dry seasons over West Sumatra. Procedia Environmental Sciences, 33, pp.140-154.
Gangrade, S., Shih-Chieh Kao, Tigstu T. Dullo, Alfred J. Kalyanapu and Benjamin L. Preston, (2019). Ensemble-based flood vulnerability assessment for probable maximum flood in a changing environment, Journal of Hydrology, 576, 342-355.
Givati, A., Lyan, B., Liu, Y., Rimmer, A., (2012). Using the WRF Model in an Operational Streamflow Forecast System for the JORDAN River. Journal of Applied Meteorology and Climatology, 51, 285–299.
Godarzi, L., Banihabib M., Roozbahani, A. (2019). A decision-making model for flood warning system based on ensemble forecasts, Journal of Hydrology, 573, 207-219
Hedayati Dezfuli, A.  and Azadi, M. (2010). Verification of MM5 forecast precipitation over Iran. Journal of the Earth and Space Physics, 36(3). (In Farsi)
Huang, Y., X. Cui, X. Li, A, (2016). three-dimensional wrf-based precipitation equation and its application in the analysis of roles of surface evaporation in a torrential rainfall event, Atmos. Res. 169 (123), 54–64.
Kukkonen, T.,  J., Kulmala, M., Moisseev, D., Nurmi, P., Ponjola, H., Pylkko, P., Vesala, T., and Viisanen, Y., (2011). The Helsinki Testbed: A Mesoscale Measurement, Research and Service Platform. Bull. Amer. Met. Soc., 32, 325-342.
Liu, Y., (2008). The operational mesogamma-scale analysis and forecast system of the U.S. army test and evaluation command’. Part I: overview of the modeling system, the forecast products, and how the products are used. J. Appl. Meteor. Climatol., 47, 1077–1092.
Lu, Tao & Yamada, Tomohito and Yamada, Tadashi, (2016). Fundamental Study of Real-time Short-term Rainfall Prediction System in Watershed: Case Study of Kinu Watershed in Japan. Procedia Engineering. 154. 88-93. 10.1016/j.proeng.2016.07.423.
Mazraeh Farahani, M., Vazifeh, A., Azadi, M. (2010). Study of the effect of horizontal resolution of MM5 mesoscale model on simulation of precipitation of October 2004 synoptical system over Iran. Journal of the Earth and Space Physics, 35(4).
Mourre, L., Condom, T., Junquas, C., Lebel, T., Sicart, J.E., Figueroa, R., and Cochachin, A., (2015). Spatio-temporal assessment of WRF, TRMM and in situ precipitation data in a tropical mountain environment (Cordillera Blanca, Peru). Hydrol. Earth Syst. Sci. 12, 6635–6681.
Nasr Isfahani, M., Yazdanpanah, H., Nasr Isfahani, M. (2020). WRF model Evaluation for predictiong temperature and   in Zayandehrood. Journal of Natural Geography Research, 51(1), 163-182. (In Farsi)
Sasanian, S., Azadi, M., Asgharishirazee, H. and Mirzaee, E. (2015). Nivar, 39(90-91), 15-26. doi: 10.30467/nivar.2015.14598
Schwartz, C. S. and Coauthors., (2009). Next-day convectional owing WRF model guidance: A second look at 2-km versus 4-km grid spacing. Mon. Wea. Rev, 137, 3351–3372
Silver, M., Karnieli, A., Ginat, H., Meiri, E. and Fredj, E., (2017). An innovative method for determining hydrological calibration parameters for the WRF-Hydro model in arid regions. Environmental modelling & software, 91, 47-69.
Silvestro, F. , L. Rossi, L. Campo, A. Parodi, E. Fiori, R. Rudari and Ferraris, L. (2019). Impact-based flash-flood forecasting system: Sensitivity to high resolution numerical weather prediction systems and soil moisture, Journal of Hydrology, 572, 388-402
Skamarock W. C., S Joseph and Klemp B. (2008). A time-split nonhydrostatic atmospheric model for weather research and forecasting applications, Journal of Computational Physics, 227(7), 3465-3485
Sodoodi, S., Noorian, A. and Reimer, M. G. (2010). Daily precipitation forecast of ECMWF verified over Iran, Theor Appl Climatol, 99, 39-51.
Sugimoto, S., Crook, N., Sun, J. and Xiao, Q. (2008). An examination of WRF 3DVAR radar data assimilation on its capability in retrieving unobserved variables and forecasting precipitation through observing system simulation experiments. Mon. Wea. Rev., 137, 4011-4029.
Taghavi, F., Neyestani, A., Ghader, S. (2013). Short range precipitation forecasts evaluation of WRF model over IRAN. Journal of the Earth and Space Physics, 39(2), 145-170. doi: 10.22059/jesphys.2013.35196. (In Farsi)
Wilson, J. W., Feng, Y., Chen, M. and Roberts, R. D., (2010). Nowcasting challenges during the Beijing Olympics: successes, failures, and implications for future nowcasting systems. Wea. Forecasting, 25, 1691-1714.
Zakeri, Z., azadi, M., and sahraeiyan, F. (2014). Verification of WRF forecasts for precipitation over Iran in the period Feb-May 2009. Nivar, 38(87-86), 3-10. (In Farsi)
Zhang, H., Wu, C., Chen, W., Huang, G., (2018). Effect of Urban Expansion on Summer Rainfall in the Pearl River Delta, South China), Journal of Hydrology, doi: https://doi.org/10.1016/j.jhydrol. 2018.11.036