Afshar, A., Kazemi, H., & Saadatpour, M. (2011). Particle Swarm Optimization for Automatic Calibration of Large Scale Water Quality Model (CE-QUAL-W2): Application to Karkheh Reservoir, Iran. Water Resources Management, 25(10), 2613–2632. https://doi.org/10.1007/s11269-011-9829-7.
Afshar, A., & Masoumi, F. (2016). Waste load reallocation in river–reservoir systems: simulation–optimization approach. Environmental Earth Sciences, 75(1), 1–14. https://doi.org/10.1007/s12665-015-4812-x.
Aghdam, J. A., Zare, M., Capaccioni, B., Raeisi, E., & Forti, P. (2012). The Karun River waters in the Ambal ridge region ( Zagros mountain Range , southwestern Iran ): mixing calculation and hydrogeological implications, 251–267. https://doi.org/10.1007/s13146-012-0083-8.
Ahmadi, E., Abooie, M. H., Jasemi, M., & Mehrjardi, Y. Z. (2016). A Nonlinear Autoregressive Model with Exogenous Variables Neural Network for Stock Market Timing : The Candlestick Technical Analysis, 29(12), 1717–1725.
Alarcon, V. J. (2019). Predicting Sediment Concentrations Using a Nonlinear Autoregressive Exogenous Neural Network. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 11621 LNCS). Springer International Publishing. https://doi.org/10.1007/978-3-030-24302-9_42.
Amani, P., Kihl, M., & Robertsson, A. (2011). NARX-based Multi-step Ahead Response Time Prediction for Database Servers. In [Host Publication Title Missing] (Pp. 813-818). IEEE--Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ISDA.2011.6121757.
Amirkhani, M., Haddad, O. B., Ashofteh, P.-S., & Lo?iciga, H. A. (2016). Determination of the optimal level of water releases from a reservoir to control water quality. Journal of Hazardous, Toxic, and Radioactive Waste, 20(2), 1–7. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000295.
Andalib, A., & Atry, F. (2009). Multi-step ahead forecasts for electricity prices using NARX : A new approach , a critical analysis of one-step ahead forecasts. Energy Conversion and Management, 50(3), 739–747. https://doi.org/10.1016/j.enconman.2008.09.040.
Asadi, M., Samani, J.M. V., Samani, H.M.V., 2020. Investigation of Solutions for Introducing Concentrated Side-Inflows to Reservoirs in The 2D Hydrodynamic and Qualitative CE-QUAL-W2 Model, Case Study: Upper Gotvand Dam (In Farsi). In: Proceedings of 18th Iranian Hydraulic Association, 5-6 Feb, Tehran University, Tehran, Iran.
Banihabib, M. E., Ahmadian, A., & Jamali, F. S. (2017). Hybrid DARIMA-NARX model for forecasting long-term daily inflow to Dez reservoir using the North Atlantic Oscillation (NAO) and rainfall data. GeoResJ, 13, 9–16. https://doi.org/10.1016/j.grj.2016.12.002.
Boussaada, Z., Curea, O., Remaci, A., Camblong, H., & Bellaaj, N. M. (2018). Daily Direct Solar Radiation. MDPI, (energies). https://doi.org/10.3390/en11030620.
Castelletti, A., Pianosi, F., Soncini-Sessa, R., & Antenucci, J. P. (2010). A multiobjective response surface approach for improved water quality planning in lakes and reservoirs. Water Resources Research, 46(6), 1–16. https://doi.org/10.1029/2009WR008389.
Dhar, A., & Datta, B. (2008). Optimal operation of reservoirs for downstream water quality control using linked simulation optimization, 853(June 2007), 842–853. https://doi.org/10.1002/hyp.
Emamgholizadeh, S., Kashi, H., Marofpoor, I., & Zalaghi, E. (2014). Prediction of water quality parameters of Karoon River ( Iran ) by artificial intelligence-based models, 645–656. https://doi.org/10.1007/s13762-013-0378-x.
Guzman, S. M., Paz, J. O., & Tagert, M. L. M. (2017). The Use of NARX Neural Networks to Forecast Daily Groundwater Levels. Water Resources Management, 31(5), 1591–1603. https://doi.org/10.1007/s11269-017-1598-5.
Haddout, S., & Maslouhi, A. (2017). Two-dimensional modeling of the vertical circulation of salt intrusion in the Sebou estuary under different hydrological conditions. ISH Journal of Hydraulic Engineering, 5010(October), 1–18. https://doi.org/10.1080/09715010.2017.1391134.
Horne, A., Szemis, J. M., Kaur, S., Webb, J. A., Stewardson, M. J., Costa, A., & Boland, N. (2016). Environmental Modelling & Software Optimization tools for environmental water decisions : A review of strengths, weaknesses, and opportunities to improve adoption. Environmental Modelling and Software, 84, 326–338. https://doi.org/10.1016/j.envsoft.2016.06.028.
Jalali, L., Zarei, M., & Guti, F. (2019). Salinization of reservoirs in regions with exposed evaporites . The unique case of Upper Gotvand Dam , Iran, 157. https://doi.org/10.1016/j.watres.2019.04.015.
Jeznach, L. C., Jones, C., Matthews, T., Tobiason, J. E., & Ahlfeld, D. P. (2016). A framework for modeling contaminant impacts on reservoir water quality. JOURNAL OF HYDROLOGY, 537, 322–333. https://doi.org/10.1016/j.jhydrol.2016.03.041.
Karamouz, M., Nazif, S., Sherafat, M. A., & Zahmatkesh, Z. (2014). Development of an Optimal Reservoir Operation Scheme Using Extended Evolutionary Computing Algorithms Based on Conflict Resolution Approach : A Case Study. Water Resources Management, 28, 3539–3554. https://doi.org/10.1007/s11269-014-0686-z.
Kim, Y., & Kim, B. (2017). Lake and Reservoir Management Application of a 2-Dimensional Water Quality Model ( CE-QUAL-W2 ) to the Turbidity Interflow in a Deep Reservoir ( Lake Soyang , Korea ) Application of a 2-Dimensional Water Quality Model ( CE-QUAL-W2) to the Turbidity Inter. Lake and Reservoir Management, 2381(March). https://doi.org/10.1080/07438140609353898.
Ma, J., Liu, D., Wells, S. A., Tang, H., Ji, D., & Yang, Z. (2015). Modeling density currents in a typical tributary of the Three Gorges. Ecological Modelling, 296, 113–125. https://doi.org/10.1016/j.ecolmodel.2014.10.030.
Park, Y., Hwa, K., Kang, J., Won, S., & Ha, J. (2014). Science of the Total Environment Developing a fl ow control strategy to reduce nutrient load in a reclaimed multi-reservoir system using a 2D hydrodynamic and water quality model. Science of the Total Environment, The, 466–467, 871–880. https://doi.org/10.1016/j.scitotenv.2013.07.041.
Parlos, A. G., Rais, O. T., & Atiya, A. F. (2000). Multi-step-ahead prediction using dynamic recurrent neural networks. Neural Networks, (February 2015). https://doi.org/10.1109/IJCNN.1999.831517.
Rani, D., & Madalena, M. (2010). Simulation – Optimization Modeling : A Survey and Potential Application in Reservoir Systems Operation, 1107–1138. https://doi.org/10.1007/s11269-009-9488-0.
Razavi, S., Tolson, B. A., & Burn, D. H. (2012). Review of surrogate modeling in water resources, 48(October 2011). https://doi.org/10.1029/2011WR011527.
Saadatpour, M., Afshar, A., & Edinger, J. E. (2017). Meta-Model Assisted 2D Hydrodynamic and Thermal Simulation Model ( CE-QUAL-W2 ) in Deriving Optimal Reservoir Operational Strategy in Selective Withdrawal Scheme. Water Resources Management, 2729–2744. https://doi.org/10.1007/s11269-017-1658-x.
Schardong, A., & Simonovic, S. P. (2015). Coupled Self-Adaptive Multiobjective Differential Evolution and Network Flow Algorithm Approach for Optimal Reservoir Operation. Journal of Water Resources Planning and Management, 141(10), 04015015. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000525.
Sedlá, J., & Nováková, T. (2017). Science of the Total Environment Sedimentary record and anthropogenic pollution of a complex , multiple source fed dam reservoirs : An example from the Nové Mlýny reservoir , Czech Republic, 574, 1456–1471. https://doi.org/10.1016/j.scitotenv.2016.08.127.
Shaw, A. R., Sawyer, H. S., LeBoeuf, E. J., McDonald, M. P., & Hadjerioua, B. (2017). Hydropower optimization using artificial neural network surrogate models of a high-fidelity hydrodynamics and water quality Model. Water Resources Research, 53, 1–18. https://doi.org/10.1002/2017WR021039.
Soleimani, S., Bozorg-haddad, O., Saadatpour, M., & Loáiciga, H. A. (2018). Simulating thermal stratification and modeling outlet water temperature in reservoirs with a data mining method. Journal of Water Supply: Research and Technology—AQUA, 1–13. https://doi.org/10.2166/aqua.2018.036.
Wang, Q., Li, S., Peng, J., Qi, C., & Ding, F. (2014). A review of hydrological/water-quality models. Frontiers of Agricultural Science and Engineering, 1(4), 267. https://doi.org/10.15302/J-FASE-2014041.
Wei, G. L., Yang, Z. F., Cui, B. S., Li, B., Chen, H., Bai, J. H., & Dong, S. K. (2009). Impact of dam construction on water quality and water self-purification capacity of the Lancang River, China. Water Resources Management, 23(9), 1763–1780. https://doi.org/10.1007/s11269-008-9351-8.
Wu, B., Yi, Z., Wu, X., Tian, Y., Han, F., Liu, J., & Zheng, C. (2015). Optimizing water resources management in large river basins with integrated surface water-groundwater modeling: A surrogate-based approach Bin. Water Resources Research, 51, 9127–9140.
https://doi.org/10.1002/2014WR016259.
Xie, H., Tang, H. A. O., & Liao, Y. (2009). TIME SERIES PREDICTION BASED ON NARX NEURAL NETWORKS : AN ADVANCED APPROACH, (July), 12–15.
Yazdi, J., & Moridi, A. (2017). Interactive Reservoir-Watershed Modeling Framework for Integrated Water Quality Management, 2105–2125. https://doi.org/10.1007/s11269-017-1627-4.
Yousefi, P., Saadatpour, M., & Afshar, A. (2019). S urrogate Based Simulation-Optimization Approach in Optimal Operation of Waterbody Considering Quality and Quantity Aspects. https://doi.org/10.22093/wwj.2019.132788.2689.
Zhang, J., Wang, X., Liu, P., Lei, X., Li, Z., Gong, W., … Wang, H. (2017). Assessing the weighted multi-objective adaptive surrogate model optimization to derive large-scale reservoir operating rules with sensitivity analysis. Journal of Hydrology, 544, 613–627. https://doi.org/10.1016/j.jhydrol.2016.12.008.