برآورد نیاز آبی گندم زمستانه دشت گرگان در شرایط تغییر اقلیم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد منابع آب، گروه آبیاری و آبادانی، دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران، کرج، ایران

2 استادیار گروه احیاء مناطق خشک و کوهستانی، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران

3 دانشجوی کارشناسی ارشد منابع آب، گروه مهندسی آب، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران

چکیده

پدیده تغییر اقلیم، با افزایش تقاضای آب به­خصوص در بخش کشاورزی، مدیریت منابع آبی را به شدت با چالش مواجه کرده است. گندم جزء محصولات اصلی و استراتژیک در سراسر جهان و علی­الخصوص کشور ایران است. در این تحقیق به شبیه­سازی اثرات تغییر اقلیم بر نیاز آبی گندم زمستانه رقم کوهدشت در دشت گرگان با استفاده از داده­های تاریخی 1985 تا 2005 پرداخته شد. پارامترهای مورد نیاز جهت محاسبه نیاز آبی گیاه تحت شرایط تغییر اقلیم با استفاده از مدل SDSM و داده­های مدل CanESM2 تحت سه سناریوی انتشار RCP2.6، RCP4.5 و RCP8.5 در چهار بازه زمانی (2039-2020)، (2059-2040)، (2079-2060) و (2099-2080) ریزمقیاس شدند. مدل هارگریوز-سامانی که متغیرهای ورودی کمتری نسبت به مدل فائو-پنمن-مونتیث دارد، جهت ریزمقیاس نمایی نیاز آبی استفاده شد. نتایج این پژوهش نشان داد که بیشترین و کمترین مقدار نیاز آبی سالانه گندم زمستانه تحت RCP2.6 برابر 403 و 286 میلی­متر به ترتیب مربوط به بازه‌های (2059-2040) و (2039-2020) است. همچنین این مقادیر در RCP4.5 برابر 361 و 336 میلی­متر به ترتیب مربوط به بازه­های (2039-2020) و (2059-2040) و در RCP8.5 برابر 336 و 199 میلی­متر به ترتیب در بازه­های (2039-2020) و (2079-2060) پیش­بینی شد. طول دوره رشد در هر سه سناریوی مورد بررسی کاهش می­یابد و روند کاهشی آن، در RCP8.5 شدیدتر از RCP4.5 است. به ‌طور کلی بر اساس نتایج این تحقیق انتظار می­رود که تغییرات اقلیمی با کاهش میزان تجمعی نیاز آبی گندم زمستانه باعث کاهش میزان مصرف آب در بخش کشاورزی در دشت گرگان شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimating the Winter Wheat Water Requirement under Climate Change Scenarios in Gorgan Plain

نویسندگان [English]

  • Ali Arefinia 1
  • Khaled Ahmadaali 2
  • Mosaed Nasiri Maryan 3
1 MSc. Student, Department of Irrigation and Reclamation Engineering, Faculty of agricultural and technology, University of Tehran, Karaj, Iran.
2 Assistant Professor, Department of Arid and Mountainous Regions Reclamation, Faculty of natural resources University of Tehran, Karaj, Iran.
3 MSc. Student, Department of Water Engineering, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
چکیده [English]

Climate change through increased water demand, especially in agricultural sector, is the main challenge facing water resources management. Wheat is one of the staple and strategic crop throughout the world, particularly in Iran. In this study, historical observations from 1985-2005 were used to simulate the effects of climate change on the winter wheat water requirement across Gorgan plain. SDSM4.2 and CanESM2 models were used to downscale winter wheat water requirement under three concentration pathway scenarios; RCP2.6, RCP4.5, and RCP8.5 in four periods (2020-2039, 2040-2059, 2060-2070, and 2080-2099). The Hargreaves-Samani (HS) model with less input variables in comparison with FAO-Penman-Monteith (PMF-56), was used for downscaling water requirement. The results of RCP2.6 scenario showed that the maximum and minimum annual water requirement of winter wheat are 403 and 286 mm in 2040-2059 and 2020-2039 periods, respectively. These values for RCP4.5 scenario were predicted to be 361 and 336 mm in 2020-2039 and 2040-2059 periods, respectively. For RCP8.5 scenario, they were predicted to be 336 and 199 mm in 2020-2039 and 2060-2079 periods, respectively. The growing period will be reduced in all three proposed scenarios and the reduction rate in RCP8.5 scenario is more than that in RCP4.5 scenario. According to the results, climate change is generally expected to reduce agricultural water consumption in Gorgan plain by reducing the cumulative winter wheat water requirement.

کلیدواژه‌ها [English]

  • CanESM2
  • Downscaling
  • Hargreaves-Samani
  • Effective rainfall
Ali, M. H., and Mubarak, S. (2017). Effective rainfall calculation methods for field crops: An Overview, Analysis and New Formulation. Asian Research Journal of Agriculture, 1-12.
Allen, R. G., L. S. Pereira, D. Raes, and M. Smith. (1998). Crop evapotranspiration—Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56. Rome: FAO.
Ashofteh, P. S., Haddad, O. B., and A. Mariño, M. (2012). Climate change impact on reservoir performance indexes in agricultural water supply. Journal of Irrigation and Drainage Engineering139(2), 85-97.
Bast, J. L. (2010). Seven theories of climate change. Heartland Institute.
Doll, P. (2002). Impact of climate change and variability on irrigation requirements: a global perspective. Climatic change54(3), 269-293.
Gassman, P. W., Reyes, M. R., Green, C. H., & Arnold, J. G. (2007). The soil and water assessment tool: historical development, applications, and future research directions. Transactions of the ASABE50(4), 1211-1250.
Geng, X., Wang, F., Ren, W., and Hao, Z. (2019). Climate Change Impacts on Winter Wheat Yield in Northern China. Advances in Meteorology, 1-12.
Ghorbani, Kh., Bazrafshan-Daryasary, M., Meftah-Halaghi, M,. Ghahraman, N. (2017). The effects of climate change on DeMartone climatic classification in Golestan province. Journal of Water and Soil. 47(2), 319-332. (In Farsi).
Goyal, R. K. (2004). Sensitivity of evapotranspiration to global warming: a case study of arid zone of Rajasthan (India). Agricultural Water Management, 69(1), 1-11.
Hargreaves, G. H., Samani, Z. A. (1985). Reference crop evapotranspiration from temperature. Appl. Eng. Agric., 1, 2, pp: 96–99.
Hourdin, F., Musat, I., Bony, S., Braconnot, P., Codron, F., Dufresne, J. L. ... and Krinner, G. (2006). The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Climate Dynamics, 27(7-8), 787-813.
Jamali, S., Abrishamchi, A., Marino, M. A., and Abbasnia, A. (2013). Climate change impact assessment on hydrology of Karkheh Basin, Iran. In Proceedings of the Institution of Civil Engineers-Water Management. 166(2), 93-104.
Kamal, A.R, Massah Bovani, A.R. (2012). Comparison of future uncertainty of AOGCM-TAR and AOGCM-AR4 models in the projection of runoff basin. Journal of earth and space physics. 38(3), 175-188. (In Farsi).
Liu, S., Mo, X., Lin, Z., Xu, Y., Ji, J., Wen, G., and Richey, J. (2010). Crop yield responses to climate change in the Huang-Huai-Hai Plain of China. Agricultural water management97(8), 1195-1209.
Mavi, H. S., and Tupper, G. J. (2004). Agrometeorology: principles and applications of climate studies in agriculture. CRC Press.
Mo, X., Liu, S., Lin, Z., and Guo, R. (2009). Regional crop yield, water consumption and water use efficiency and their responses to climate change in the North China Plain. Agriculture, Ecosystems and Environment134(1-2), 67-78.
Monteith, J. L. 1965. Evaporation and environment. In Vol. 19 of 19th Symp. of the Society for Experimental Biology, 205–234. Cambridge, UK: Cambridge University Press.
Monteith, J. L., and Unsworth, M. H. (1990). Principles of environmental physics. 2nd ed. New York: Edward-Arnold.
Parry, M. L., Rosenzweig, C., Iglesias, A., Livermore, M., & Fischer, G. (2004). Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Global environmental change, 14(1), 53-67.
Rahmani, M., Jami Al-Ahmadi, M., Shahidi, A., and Hadizadeh Azghandi, M. (2016). Effects of climate change on length of growth stages and water requirement of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) (Case study: Birjand plain). Journal of Agroecology, 7(4), 443–460. (In Farsi).
Ramezani Etedali, H., Ahmadaali, K., Gorgin, F., and Ababaei, B. (2019). Optimization of the cropping pattern of main cereals and improving water productivity: application of the water footprint concept. Irrigation and Drainage, 68(4), 765-777.
Rezaei, A. (2013). Concepts of statistics and probabilities. Nashr Mashhad Publication, 431. (In Farsi).
Saadati, Z., Delbari, M., Panahi, M., Amiri, E., Rahimian, M., and Ghodsi, M. (2016). Evaluation of the Effects of Climate Change on Wheat Growing Period and Evapotranspiration Using the CERES-Wheat Model (Case Study: Mashhad). Water and soil science, 26(1), 67-79.
Sarzaeim, P. and Bozorg-Haddad, O. (2015). Runoff prediction under climate change conditions: artificial neural network. Proceeding of The third international conference on Advances in Civil, Structural and Environmental Engineering, Zurich, Switzerland, 10-11 October.
Sarzaeim, P., Bozorg-Haddad, O., Bozorgi, A., & Loáiciga, H. A. (2017). Runoff projection under climate change conditions with data-mining methods. Journal of Irrigation and Drainage Engineering, 143(8), 04017026.
Shamanian, G. H., Raghimi, M., and Yakhkeshi, E. (2006). Hydrogeochemistry of groundwater in Gorgan plain: an implication for ground water contamination susceptibility. Journal of Agriculture and natural resources science, 13 (4), 1-10. (In Farsi).
Sharma, A., Sood, R. K., and Kalubarme, M. H. (2004). Agro meteorological wheat yield forecast in Himachal Pradesh. 153-160.
Smith, M. (1992). CROPWAT-A computer program for irrigation planning and management. Irrigation and Drainage Paper 46. Rome: FAO.
Tao, F., Yokozawa, M., Liu, J., Zhang, Z., (2008). Climate-crop yield relationships at province scale in China and the impacts of recent climate trend. Climate Res. 38, 83–94.
Tao, X. E., Chen, H., Xu, C. Y., Hou, Y. K., & Jie, M. X. (2015). Analysis and prediction of reference evapotranspiration with climate change in Xiangjiang River Basin, China. Water Science and Engineering8(4), 273-281.
Teixeira, E. I., Fischer, G., Van Velthuizen, H., Walter, C., and Ewert, F. (2013). Global hot-spots of heat stress on agricultural crops due to climate change. Agricultural and Forest Meteorology170, 206-215.
Wang, W., Ding, Y., Shao, Q., Xu, J., Jiao, X., Luo, Y., and Yu, Z. (2017). Bayesian multi-model projection of irrigation requirement and water use efficiency in three typical rice plantation region of China based on CMIP5. Agricultural and Forest Meteorology232, 89-105.
Wisser, D., Frolking, S., Douglas, E. M., Fekete, B. M., Vörösmarty, C. J., and Schumann, A. H. (2008). Global irrigation water demand: Variability and uncertainties arising from agricultural and climate data sets. Geophysical Research Letters35(24), 1-5.
Xing, W., Wang, W., Shao, Q., and Ding, Y. (2018). Estimating Net Irrigation Requirements of Winter Wheat across Central-Eastern China under Present and Future Climate Scenarios. Journal of Irrigation and Drainage Engineering144(7), 05018005.
Xu, C. Y., Gong, L, Jiang, T, Chen, D, and Singh, V. P. (2006). Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. J. hydrol. 327(1), 81-93.
Yang, C., Fraga, H., van Ieperen, W., Trindade, H., & Santos, J. A. (2019). Effects of climate change and adaptation options on winter wheat yield under rainfed Mediterranean conditions in southern Portugal. Climatic Change154(1-2), 159-178.
Yarmohammadi, S., Zakerinia, M., Ghorbani, K., and Soltani, A. (2018). Investigation of the effect of climate change on evapotranspiration and wheat water requirement in Bojnord region. WaterEngineering, 10(35), 97–110. (In Farsi).
Zolghadr-Asli, B., Bozorg-Haddad, O., and Chu, X. (2019). Effects of the uncertainties of climate change on the performance of hydropower systems. Journal of Water and Climate Change, 10(3), 591-609.