Ahmadi, S., Mosallaeepour, E., Kamgar-Haghighi, A. and Sepaskhah, A. (2015). Modeling Maize Yield and Soil Water Content with AquaCrop Under Full and Deficit Irrigation Managements. Water Resources Management, 29(8), 2837-2853.
Ahmed, E. A., Hassan, E. A., Tobgy, K.M., Ramadan, E.M. (2014). Evaluation of rhizobacteria of some medicinal plants for plant growth promotion and biological control.
Annals of Agricultural Sciences. 59 (2), 273–280.
Akumaga, U., Tarhule, A. and Yusuf, A.A. (2017). Validation and testing of the FAO AquaCrop model under different levels of nitrogen fertilizer on rainfed maize in Nigeria, West Africa. Agricultural and Forest Meteorology. 232: 225–234
Algharibi, E., Schmitz, G., Lennartz, F., Schutze, N., Grundmann, J. and Kloss, S. (2013). Evaluation of field and greenhouse experiments with tomatoes using the AquaCrop model as a basis for improving water productivity. Assessment of Climate Change Impact on Water Resources in Serbia. 560-576.
Beven K. (1979). A sensitivity analysis of the Penman-Monteith actual evapotranspiration estimates. Journal of Hydrology, 44(3-4), 169-190.
Fang, Q. X., Ma, L., Trout, T. J., Comas, L. H., DeJonge, K. C., Ahuja, L. R. (2017b). Modeling N concentration and uptake for maize hybrid under growth stage based deficit irrigations Frontiers of Agricultural Science and Engineering. 60(6): 2067-2081.
Fang, Q., Ma, L., Ahuja, L., Trout, T., Malone, R., Zhang, H., Guo, D. and Yu, Q. (2017a). Long-term simulation of growth stage-based irrigation scheduling in maize under various water constraints in Colorado, USA. Frontiers of Agricultural Science and Engineering, 4(2):172.
Guo, D., Zhao, R., Xing, X., and Ma, X. (2019). Global sensitivity and uncertainty analysis of the AquaCrop model for maize under different irrigation and fertilizer management conditions. Archives of Agronomy and Soil Science, 1-19.
Hajizadeh M., Rahimikhoob A., Aliniaeifard S. and Varavipour M. (2019). Determination of Normalized Water Productivity and Sensitivity Analysis of AquaCrop Model for Radish Product. Iranian Journal of Irrigation and Drainage. 5(13): 1527-1537.
Hui-min X., Xin-gang X. U., Zhen-hai L. I., Yi-jin C., Hai-kuan, F. and Gui-jun Y. (2017). Global sensitivity analysis of the AquaCrop model for winter wheat under different water treatments based on the extended Fourier amplitude sensitivity test. J. Integrated. Agriculture. 16(11):2444–2458.
Jin, X., Li, Z., Nie, C., Xu, X., Feng, H., Guo, W., and Wang, J. (2018). Parameter sensitivity analysis of the AquaCrop model based on extended fourier amplitude sensitivity under different agro-meteorological conditions and application. Field Crops Research, 226, 1-15.
Karimi Avargani H., Rahimikhoob A. and Nazari Fard M. (2019). Sensitivity Analysis of Aquacrop Model for Barley in Pakdasht Region. Journal of Water and Soil Science. 2019; 23 (3) :53-63. (In Farsi)
Lenhart, T., Eckhardt, K., Fohrer, N. and Frede, H. (2002). Comparison of two different approaches of sensitivity analysis. Physics and Chemistry of the Earth, Parts A/B/C, 27(9-10), 645-654.
Liu, C., Qi, Z., Gu, Z., Gui, D., and Zeng, F. (2017). Optimizing irrigation rates for cotton production in an extremely arid area using RZWQM2 simulated water stress. Transactions of the ASABE. 60(6), 2041-2052.
Ministry of Jihad. (2018). Greenhouse cultivation area in Iran. Retrieved April 12, 2019, from https://horticulture.maj.ir.(In Farsi)
Nguyen, P.M., Kwee, E.M., and Niemeyer, E.D. (2010). Potassium rate alters the antioxidant capacity and phenolic concentration of basil (Ocimum basilicum L.) leaves. Food Chemistry. 123, 1235–1241.
Patrignani, A. and Ochsner, T.E. (2015). Canopeo: A Powerful New Tool for Measuring Fractional Green Canopy Cover. Agronomy Journal. 107(6): 2312-2320.
Raes D, Steduto P, Hsiao TC, Fereres E (2009a) AquaCrop-The FAO Crop Model to Simulate Yield Response to Water: Reference Manual Annexes.
Raes, D., Steduto, P., Hsiao, T. C. and Fereres, E. (2009b). AquaCrop - the FAO crop model to simulate yield response to water: II. Main algorithms and software description. Agronomy Journal. 101(3): 438–447.
Rahimikhoob H., Sohrabi T. and Delshad M. (2019). Performance evaluation of AquaCrop model in simulating Basil (Ocimum basilicum L.) growth under different soil fertility stress in controlled greenhouse conditions. Iranian journal of soil and water research. Accepted for publication. (In Farsi)
Sandhu, R. and Irmak, S. (2019). Performance of AquaCrop Model in Simulating Maize Growth, Yield, and Evapotranspiration under Rainfed, Limited and Full Irrigation. Agricultural Water Management. 223.
Stanghellini C. (2014). Horticultural Production in Greenhouses: Efficient Use of Water. Acta horticulturae. 1034: 25-32.
Steduto, P., Hsiao, T. C., Raes, D. and Fereres, E. (2009). AquaCrop: The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agronomy Journal. 101(3): 426-437.
Vanuytrecht, E., Raes, D., and Willems, P. (2014). Global sensitivity analysis of yield output from the water productivity model. Environmental Modelling & Software, 51, 323-332.
Wallach, D., Makowski, D., Jones, J., and Brun, F. (2019) Working with dynamic crop models (3rd ed.). Elsevier.