تأثیر کاربرد کودهای زیستی بر شاخص‌های رشدی ذرت (Zea mays L.) در خاک‌های آلوده به سرب

نوع مقاله : مقاله پژوهشی


1 دانشجوی دکتری زراعت- دانشگاه زنجان- دانشکده کشاورزی- گروه زراعت

2 کارشناس ارشد بیولوژی خاک، گروه خاکشناسی، دانشکده کشاورزی، دانشگاه زنجان

3 استاد گروه خاکشناسی، دانشکده کشاورزی، دانشگاه زنجان


به­منظور بررسی تأثیر کودهای زیستی بر شاخص­های رشدی گیاه ذرت (Zea mays L.) در خاک­های آلوده به سرب، آزمایشی در گلخانه گروه خاک­شناسی دانشکده کشاورزی دانشگاه زنجان در سال 1394 به­صورت فاکتوریل بر پایه طرح کاملاً تصادفی در 3 تکرار به اجرا درآمد. تیمارهای موردبررسی عبارت بودند از عامل اول: سطوح آلودگی خاک به سرب (0، 50، 100، 200 و 400 میلی­گرم بر کیلوگرم خاک) و عامل دوم: بدون مایه­زنی (C)، مایه­زنی با باکتری حل‌کننده فسفات(Pseudomonas putida)(P)، مایه­زنی با قارچ Funneliformis mosseae(M)، مایه­زنی با قارچ میکوریز Funneliformis mosseae+ باکتری حل‌کننده­ فسفات (M+P)، مایه­زنی با قارچ میکوریز Rhizophagus intraradices (I)، مایه­زنی با قارچ میکوریز Rhizophagus intraradices+ باکتری حل‌کننده­ فسفات (I+P) بود. پارامترهای مورد اندازه‌گیری شامل: سرب، آهن و مس در ریشه و اندام هوایی، شاخص سبزینگی برگ و ارتفاع گیاه بود. مایه­زنی خاک با قارچ­های میکوریزی و باکتری در شرایط عدم وجود عنصر سرب سبب بهبود شاخص­های رشد و عملکرد گیاه گردید. بر این اساس تیمار مایه­زنی با قارچ میکوریز Funneliformis mosseae + باکتری حل‌کننده­ فسفات (I+M) توانست فاکتور انتقال (TF) را 28/67 درصد نسبت به تیمار شاهد کاهش دهد. همچنین کودهای زیستی توانستند میزان سرب جذب شده را در ریشه گیاه در مقایسه با تیمار شاهد9/61 درصد افزایش دهند؛ به بیان دیگر توانستند سرب جذب شده از خاک توسط گیاه را در ریشه گیاه حفظ کنند. با توجه به نتایج حاصل در غلظت بحرانی سرب (400 میلی­گرم بر کیلوگرم خاک)، کودهای زیستی نتوانستند تأثیر مفید و فزاینده­ای بر شاخص سبزینگی برگ و ارتفاع در این رقم از ذرت (رقم ماکسیما) داشته باشند. با این حال در غلظت­های کم­تر از فلز سنگین سرب، کود‌های زیستی می­توانند اثرات مضر و سوء این فلزات سنگین را در اندام­های هوایی و ریشه گیاه ذرت (رقم ماکسیما) کاهش دهند.



عنوان مقاله [English]

The Effect of Biofertilizers Application on Growth Indices of Maize (Zea mays) in Lead Contaminated Soils

نویسندگان [English]

  • moslem heydari 1
  • fatemeh rostami 2
  • ahmad golchin 3
1 Ph.D. student of Agronomy, Department of Agronomy, Faculty of Agriculture, Zanjan University
2 MSc of Soil Biology, Department of Soil Science, Faculty of Agriculture, University of Zanjan
3 Professor of Soil Science, Faculty of Agriculture, Zanjan University
چکیده [English]

In order to investigate the effect of biofertilizers on growth indices of maize (Zea mays L.) in lead-contaminated soils, a factorial experiment based on a completely randomized design with three replications was conducted in the greenhouse of soil science department at Zanjan University in 2015. Factor I included: soil contamination levels of lead (0, 50, 100, 200 and 400 mg/kg soil) and Factor ΙΙ, No inoculation (C), inoculation with soluble bacteria, Phosphate (Pseudomonas putida) (P), inoculation with Funneliformis mosseae (M), inoculation with mycorrhizal fungus Funneliformis mosseae + phosphate solubilizing bacterium (M + P), inoculation with Rhizophagus intraradices mycorrhizal (I), inoculation with mycorrhizal fungi Rhizophagus intraradices + phosphate-solubilizing bacterium (I + P).  The measured parameters were leaf chlorophyll index, plant height, lead of shoot and root, Copper and Iron of root and shoot. Inoculation of soil with mycorrhizal fungi and bacteria improved plant growth and yield indices in the absence of lead. Inoculation with mycorrhizal fungus Funneliformis mosseae + phosphate-solubilizing bacterium (I + P) increased leaf chlorophyll index 11.65% compared to the no-inoculation treatment (control). Also, biofertilizers were able to increase the amount of absorbed lead in the plant root compared to the control treatment by 61.9%. In other words, they are able to retain the absorbed lead from the soil by plant root. According to the obtained results at the critical concentration of lead (400 mg/kg soil), biofertilizers could not have a beneficial and increasing effect on chlorophyll index and plant height. However, at lower concentrations of Pb, biofertilizers can decrease the harmful and adverse effects of these heavy metals on shoot and root of plant.

کلیدواژه‌ها [English]

  • Heavy metals
  • Mycorrhizal fungi
  • plant yield
  • Phosphate solubilizing bacteria
Abbaspour, A., Kalbasi, M., Haj Rasooliha, SH., and Golchin, A. (2010). Survey of contamination of some Iranian agricultural soils with cadmium and lead, 13th Congress of Soil Science, Tehran-Soil Conservation and Watershed Research Center.
Amanifar, S., Asgharzadeh, N. A., Najafi, N., Ostan, Sh. V., and Bolandnazar. S. (2011). Effect of mycorrhizal fungi on lead phytoremediation by sorghum (Sorghum bicolor L.). Water and Soil Science 22, 16-1. (In Persian with English abstract)
Andrade, S. A. L., Abreu, C. A., De Abreu, M. F., and Silveira, A. P. D. (2004). Influence of lead additions on arbuscular mycorrhiza and Rhizobium symbioses under soybean plants. Applied Soil Ecology, 26(2), 123-131.
Ansari, A., Razmjoo, J., Karim Majani, H., and M., Zarei, (2014). Effect of mycorrhizal inoculation and pre-treatment with salicylic acid at different levels of drought on morphological factors on Brassica napus. Journal of Crop Production and Processing, 4(12), 181-194. (In Persian)
Boonyapookana, B., Parkpian, P., Techapinyawat, S., Delaune, R. D., and Jugsujinda, A. (2005). Phytoaccumulation of lead by Sunflower (Helianthus annus), Tobacco (Nicotiana tabacum), and Vetiver (Vetiveria zizanioides). Journal of Environmental Science and Health, 40(1), 117-137.
Chen, B. D., Li, X. L., Tao, H. Q., Christie, P., and Wong, M. H. (2003). The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc. Chemosphere, 50(6), 839-846.
Dehghani Mashkani, M. R., Naghdi Badi, H., Darzi, M. T., Mehrafarin, A., Rezazadeh, Sh., and Kadkhoda, Z. (2011). The Effect of Biological and Chemical Fertilizers on Quantitative and Qualitative Yield of Shirazian Babooneh (Matricaria recutita L.). journal of Medicinal plants, 2 (38): 35-48.
Demir, S. (2004). Influence of arbuscular mycorrhiza on some physiological growth parameters of pepper. Turkish Journal of Biology, 28(2-4), 85-90.
Fang, J., Wen, B., Shan, X., Lin, J. and Owens, G. (2007). Is an adjusted rhizosphere-based method valid for field assessment of metal phytoavailability? Application to noncontaminated soils. Environmental Pollution. 150: 209-217.
Feng, M. H., Shan, X. Sh., Zhang, Sh., and Wen, B. (2005). A comparison of the rhizosphere based method with DTPA, EDTA, CaCl2, and NaNO3 extraction methods for prediction of bioavailability of metals in soil to barley. Environmental Pollution. 137: 231-240.
Gajewska, E., Słaba, M., Andrzejewska, R., and Skłodowska, M. (2006). Nickel-induced inhibition of wheat root growth is related to H2O2 production, but not to lipid peroxidation. Plant Growth Regulation, 49(1), 95-103.
Gee, G. W., and Bauder, J. W., (1986). Particle-size analysis. Methods of soil analysis: Part 1 Physical and Mineralogical Methods, Soil Science Society of America. Inc., Madison, WIS, USA
Gildon, A. A., and Tinker, P. B. (2000). Interactions of vesicular‐arbuscular mycorrhizal infection and heavy metals in plants. Journal of New Phytologist, 95(2), 247-261.
Glick, B. R., Penrose, D. M., and Li, J. (2003). A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. Journal of theoretical biology, 190(1), 63-68.
Gonzalez-Guerrero, M., Azcon-Aguilar, C., Mooney, M., Valderas, A., MacDiarmid, C. W., Eide, D.  J., and Ferrol, N. (2005). Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family. Fungal Genetics and Biology, 42(2), 130-140.
Hall, J. L. (2002). Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53(366), 1-11.
Han, S. H., Kim, D. H., and Lee, J. C. (2011). Effects of the ectomycorrhizal fungus Pisolithus tinctorius and Cd on physiological properties and Cd uptake by hybrid poplar Populusalba × glandulosa. Journal of Ecology and Environment, 34(4), 393-400.
Hanson, W. C. (1950). The photometric determination of phosphorus in fertilizers using the phosphovanado‐molybdate complex. Journal of the Science of Food and Agriculture, 1(6), 172-173.
Joner, E., and Leyval, C. (2000). Time-course of heavy metal uptake in maize and clover as affected by root density and different mycorrhizal inoculation regimes. Biology and Fertility of Soils, 33(5), 351-357.
Kapoor, A., and Viraraghavan, T. (1995). Fungal biosorption an alternative treatment option for heavy metal bearing wastewaters: a review. Bioresource Technology, 53(3), 195-206.
Khan, A. G. (2006). Mycorrhizoremediation an enhanced form of phytoremediation. Journal of Zhejiang University Science B, 7(7), 503-514.
Kitson, R. E., and Mellon, M. G. (1944). Colorimetric determination of phosphorus as molybdivanadophosphoric acid. Journal of Industrial & Engineering Chemistry Analytical Edition, 16(6), 379-383.
Kumar, P. N., Dushenkov, V., Motto, H., and Raskin, I. (1995). Phytoextraction: The Use of Plants to Remove Heavy Metals from Soils. Environmental Science and Technol, 29(5), 1232-1238.
Kungu, J. B., Lasco, R., Delacruz, L., Delacruz, R., and Husain, T. (2010). Effect of vesicular arbuscular mycorrhiza (VAM) fungi inoculation on coppicing ability and drought resistance of Senna spectabilis. Pakistan Journal of Botany, 40(5), 2217-2224.
Lindsay, W. L. and Norvel, W. A. (1978). Development of a DTPA soil tests for zinc, iron, manganese and copper. Soil Science Society of America Journal. 42: 421-428.Liud, J., Li, K., Xu, J., Zhang, Z., Ma, T., Lu, X., Yang, J. H., and Zhu, Q. (2010). Lead toxicity, uptake, and translocation in different rice cultivars. Plant Science, 165(4), 793-802.
McGrath, S. P., Zhao, F. J., and Lombi, E. (2001). Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant and Soil, 232(1-2), 207-214.
Mclean, E. O. (1982). Soil pH and Lime Requirement. In: Page, A.L., Ed., Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, American Society of Agronomy, Soil Science Society of America, Madison, 199-224.
Mellem, J. J., Baijnath, H. and Odhav, B. (2009). Translocation and accumulation of Cr, Hg, As, Pb, Cu and Ni by Amaranthus dubius (Amaranthaceae) from contaminated sites. Journal of Environmental Science and Health.
Ndeda, L. A. and Manohar, S. (2014). Bio Concentration Factor and Translocation Ability of Heavy Metals within Different Habitats of Hydrophytes in Nairobi Dam, Kenya. Journal of Environmental Science, Toxicology and Food Technology. 8(5): 42-45.
Pachura, P., Ociepa-Kubicka, A. and SkowronGrabowska, B. (2016). Assessment of the availability of heavy metals to plants based on the translocation index and the bioaccumulation factor. Journal of Desalination and Water Treatment. 57(3): 1469-1477.
Rajaee, A., and Karimian, M. (2006). Mineral nutrition, toxic element accumulation and water relations of arbuscular mycorrhizal plants. Mycorrhizal symbiosis, 4(12), 75-88.
Rostami, Gh., Gholamalizadeh Ahangar, A., and Lakzian, A. (2013). The effect of time on the distribution of lead forms in contaminated soil. Journal of Water and Soil, 5(27), 1057-1066. (In Persian).
Salt, D. E., Smith, R. D., and Raskin, I. (1998). Phytoremediation. Annual Review of Plant Biology. 49(1): 643-668.
Sharma, P., and Dubey, R. S. (2005). Lead toxicity in plants. Plant Physiology. Brazilian Journal of Plant Physiology, 17(1), 35-52.
Smith, S. E., and Read, D. J. (2008). Mineral nutrition, toxic element accumulation and water relations of arbuscular mycorrhizal plants. Mycorrhizal Symbiosis, 45(3), 11-28.
Tangahu, B. V., Abdullah, S. R. S., Basri, H., Idris, M., Anuar, N. and Mukhlisin, M. (2011). A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering, http://dx.doi.org/10.1155/2011/93916.
Tao, L., and Zhiwei, Z.  (2005). Arbuscular mycorrhizas in a hot and arid ecosystem in southwest China. Applied Soil Ecology. 29(2), 135-141.
Tessier, A., Campbell, P. G. C., and Bisson M. (1979). Sequential Extraction procedure for the speciation of particular trace metals. Analytical Chemistry, 51(7), 1-22.
Tiwari, S., Kumari, B. and Singh, S. N. (2008). Evaluation of metal mobility/immobility in fly ash induced by bacterial strains isolated from the rhizospheric zone of Typha latifolia growing on fly ash dumps. Bioresource Technology. 99: 1305-1310.
Wierzbicka, M. (1995). How lead loses its toxicity to plants. Acta Societatis Botanicorum Poloniae. 64: 81-90.
Wong, C. C., Wu, S. C., Kuek, C., Khan, A. G., and Wong, M. H. (2007). The role of mycorrhizae associated with vetiver grown in Pb‐/Zn‐contaminated soils: greenhouse study. Restoration Ecology, 15(1), 60-67.
Wu, Q. S., and Xia, R. X. (2006). Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. Journal of Plant Physiology, 163(4), 417-425.