تأثیر کود نیتروژنه بر برخی صفات رشدی و عملکرد گیاه کینوا (Chenopodium quinoa Willd)در شرایط آبیاری با زه‌آب مزارع نیشکر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران

2 دانشیار گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران

3 استاد گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران

4 دانشیار گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

به­منظور بررسی اثر کاربرد نیتروژن و آبیاری با زهاب مزارع نیشکر بر عملکرد، اجزای عملکرد، مقدار نیتروژن دانه و کارایی مصرف نیتروژن کینوا (رقم گیزاوان)، آزمایشی مزرعه­ای در سال زراعی 98-1397 به صورت کرت­های خرد شده در قالب طرح بلوک­های کامل تصادفی در سه تکرار اجرا گردید. در این آزمایش چهار سطح کود نیتروژن (0، 75 ، 150 ، 225 کیلوگرم در هکتار) از منبع کود اوره به عنوان فاکتور اصلی و سه سطح آب آبیاری شامل شاهد (آب کارون با شوری 5/2 دسی­زیمنس بر متر) و آبیاری یک در میان (کارون–زهاب نیشکر با شوری حدود 5 دسی­زیمنس بر متر) و آبیاری با زهاب نیشکر (با شوری 5/7 دسی­زیمنس بر متر) به عنوان فاکتور فرعی در نظر گرفته شد. نتایج نشان داد که حداکثر شاخص سطح برگ، عملکرد دانه، شاخص برداشت و مقدار نیتروژن دانه کینوا با کاربرد 150 کیلوگرم کود نیتروژن در هکتار حاصل شد. حداکثر وزن هزار دانه در تیمار آبیاری کارون (77/2 گرم) مشاهده شد. کاربرد 150 کیلوگرم نیتروژن در هکتار همراه با آبیاری یک در میان سبب بهبود شاخص سطح برگ (51%)، عملکرد دانه (79%)، شاخص برداشت (60%)، محتوی نیتروژن دانه (61%) و نهایتاً افزایش راندمان مصرف نیتروژن گردید. در تیمار آبیاری با زهاب نیشکر، افزایش سطح نیتروژن خاک نه­تنها اثرات نامطلوب شوری را تعدیل نکرد، بلکه سبب کاهش محتوی نیتروژن دانه نیز گردید. به­طور کلی نتایج این مطالعه نشان داد که با مصرف کود نیتروژن کافی می­توان تا حدی اثرات زیان­بار شوری بر رشد و عملکرد گیاه را کاهش داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Nitrogen Fertilizer on Some Growth Traits and Yield of Quinoa (Chenopodium quinoa Willd) Irrigated with Sugar-cane Fields Drainage Water

نویسندگان [English]

  • Payvand Papan 1
  • Abdolamir Moezzi 2
  • Mostafa Chorom 3
  • Afrasyab Rahnama 4
1 Ph.D. Student, Department of Soil Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2 Associate Professor, Department of Soil Sciences, Faculty of Agriculture, Shahid Chamran University of Ahvaz
3 Professor, Department of Soil Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
4 Associate Professor, Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
چکیده [English]

In order to study the effect of nitrogen and irrigation application with sugar-cane effluent on yield, yield components, grain nitrogen and nitrogen use efficiency of Quinoa (Gizzavan), a field trial was conducted as split plot design in 2018-19. In this experiment, four levels of nitrogen fertilizer (0, 75, 150, 225 kg ha-1) using urea fertilizer as a main factor and three levels of irrigation water including control (Karun river water with 2.5 dS m-1 salinity), alternative irrigation with river water and sugar-cane effluent (with salinity of about 5 dS m-1), and irrigation with sugar-cane effluent (with 7.5 dS m-1salinity) as sub-factor were performed in three replications. The maximum leaf area index, grain yield, index harvesting and nitrogen content of quinoa seed were obtained with application of 150 kg N ha-1. The maximum 1000-grain weight (2.77 g) was observed in treatment irrigated with Karun river water. Application of 150 kg N ha-1 and alternative irrigation improved leaf area index (51%), grain yield (79%), harvest index (60%), grain nitrogen content (61%) and finally increased nitrogen use efficiency. In irrigation treatment using sugarcane effluent, increasing nitrogen levell in the soil, not only did not mitigate the adverse effects of salinity, but also decreased the nitrogen content of the seed. Generally, the results of this study indicated that using adequate nitrogen fertilizer can mitigate the detrimental effects of salinity on plant growth and yield.

کلیدواژه‌ها [English]

  • Nitrogen
  • Quinoa
  • Sugar-cane
  • Seed yield
Alshameri, A., Al-Qurainy, F., Khan, S., Nadeem, M., Gaafar, A.R., Tarroum, M., Alameri, A., Alansi, S. and Ashraf, M. (2017). Appraisal of guar [Cyamopsis tetragonoloba (L.) Taub.] Accessions for forage purpose under the typical Saudi Arabian environmental conditions encompassing high temperature, salinity and drought. Pakistan Journal of Botany, 49(4), 1405-1413.
Algosaibi, A. M., El-Garawany, M. M., Badran, A. E. and Almadini, A. M. (2015). Effect of irrigation water salinity on the growth of Quinoa plant seedlings. Journal of Agricultural Science, 7(8), 205.
Abou-Amer, A. I. and Kamel, A. S. (2011). Growth, yield and nitrogen utilization efficiency of quinoa (Chenopodium quinoa) under different rates and methods of nitrogen fertilization. Egyptian Journal of Agronomy, 33(2), 155-166.
Adolf, V. I., Shabala, S., Andersen, M. N., Razzaghi, F., & Jacobsen, S. E. (2012). Varietal differences of quinoa’s tolerance to saline conditions. Plant and Soil, 357(1-2), 117-129.
Almaliotis, D., Therios, I. and Karatassiou, M. (1996). Effects of nitrogen fertilization on growth, leaf nutrient concentration and photosynthesis in three peach cultivars. In II International Symposium on Irrigation of Horticultural Crops 449 (pp. 529-534).
Amjad, M., Akhtar, J., Haq, M. A., Riaz, M. A., & Jacobsen, S. E. (2014). Understanding salt tolerance mechanisms in wheat genotypes by exploring antioxidant enzymes. Pakistan Journal of Agricultural Sciences, 51(4).
Amjad, M., Akhtar, S. S., Yang, A., Akhtar, J., & Jacobsen, S. E. (2015). Antioxidative response of quinoa exposed to iso‐osmotic, ionic and non‐ionic salt stress. Journal of Agronomy and Crop Science, 201(6), 452-460.
Anderson, D., Bullock, D., Johnson, G. and Taets, C. (1993). Evaluation of the minolta SPAD-502 chlorophyll meter for on farms N management of corn in lllinois. Journal of Plant Nutrition, 21(4), 510-521.
Arduini, I., Masoni, A., Ercoli, L. and Mariotti, M. (2006). Grain yield, and dry matter and nitrogen accumulation and remobilization in durum wheat as affected by variety and seeding rate. European Journal of Agronomy, 25(4), 309-318.
Awadalla, A. and Morsy, A. S. (2017). Influence of planting dates and nitrogen fertilization on the performance of quinoa genotypes under Toshka conditions. Egyptian Journal of Agronomy, 39(1), 27-40.
Azarpour, E., Bozorgi, H. R. and Moraditochaee, M. (2014, July). Effects of ascorbic acid foliar spraying and nitrogen fertilizer management in spring cultivation of Quinoa (Chenopodium quinoa) in North of Iran. Biological Forum, 6(2), 254-260.
Baki, G. A. E., Siefritz, F., Man, H. M., Weiner, H., Kaldenhoff, R. and Kaiser, W. M. (2000). Nitrate reductase in Zea mays L. under salinity. Plant, Cell and Environment, 23(5), 515-521.
Basra, S.M.A., Iqbal, S. and Afzal, I. (2014).  Evaluating the response of nitrogen application on growth, development and yield of quinoa genotypes, International Journal of Agriculture and Biology, 16(5).
Bertero, H. D., De la Vega, A. J., Correa, G., Jacobsen, S. E. and Mujica, A. (2004). Genotype and genotype-by-environment interaction effects for grain yield and grain size of quinoa (Chenopodium quinoa Willd.) as revealed by pattern analysis of international multi-environment trials. Field Crops Research, 89(2-3), 299-318.
Bhargava, A., Shukla, S. and Ohri, D. (2006). Chenopodium quinoa—an Indian perspective. Industrial crops and products, 23(1), 73-87.
Bhargava, A., Shukla, S. and Ohri, D. (2007). Genetic variability and interrelationship among various morphological and quality traits in quinoa (Chenopodium quinoa Willd). Field Crops Research, 101(1), 104-116.
Bremner, J. M. and Mulvaney, C. S. (1982). Nitrogen-total. IN: page, A. L. (ed).Methods of soil analysis, part 2, American society of Agronomy, Madison, WI.pp. 594-622.
Craswell, E. T. and Godwin, D. C. (1984). The efficiency of nitrogen fertilizers applied to cereals grown in different climates (No. REP-3326. CIMMYT.).
Erley, G.S.A., H. Kaul, M. Kruse and W. Aufhammer, (2005).  Yield and nitrogen utilization efficiency of the pseudocereals amaranth, quinoa, and buckwheat under differing nitrogen fertilization. European Journal of Agronomy, 22(1), 95-100.
Fathi, Gh. (2005). Effect of Drought and Nitrogen on Nitrogen Remobilization in Six Wheat Cultivars. Iranian Journal of Agricultural Sciences, 36(5), 1093-1101.
Fredeen, A. L., Gamon, J. A. and Field, C. B. (1991). Responses of photosynthesis and carbohydrate‐partitioning to limitations in nitrogen and water availability in field‐grown sunflower. Plant, Cell and Environment, 14(9), 963-970.
Francois, L. E., Grieve, C. M., Maas, E. V. and Lesch, S. M. (1994). Time of salt stress affects growth and yield components of irrigated wheat. Agronomy journal, 86(1), 100-107.
Gandois L, Perrin AS, Probst A (2011) Impact of nitrogenous fertiliserinduced proton release on cultivated soils with contrasting carbonate contents: a column experiment. Geochim Cosmochim Acta 75:1185–1198
Geering H., and Hodgson J. (1969). Micronutrient Cation Complexes in Soil Solution: III. Characterization of Soil Solution Ligands and their Complexes with Zn2+ and Cu2+. Soil Science Society of America Journal, 33(1):54.
Ghaffari, A., Ghasemi, V.R. and DePauw, E. (2014). Agro-climatically zoning of Iran by UNESCO approach. Iranian Dryland Agronomy Journal, 4, 63-95. (In Farsi).
Grattan, S. R. and Grieve, C. M. (1998). Salinity–mineral nutrient relations in horticultural crops. Scientia Horticulturae, 78(1-4), 127-157.
Gomaa, E. F. (2013). Effect of nitrogen, phosphorus and biofertilizers on quinoa plant. Journal of Applied Sciences Research, 9(8), 5210-5222.
Gómez‐Pando, L. R., Álvarez‐Castro, R. and Eguiluz‐De La Barra, A. (2010). Effect of salt stress on Peruvian germplasm of Chenopodium quinoa willd: a promising crop. Journal of Agronomy and Crop Science, 196(5), 391-396.
Harper, J.E. (1994). Nitrogen metabolism. In: Boote, K.J. Bennett, J.M. Sinclair, T.R. and Paulsen. G.M. Physiology and determination of crop yield. Madison, Wisconsin, USA: 285-302.
Hanafy, A.H., M.A. Gad-Mervat, H.M. Hassam and A. Amin-Mona. (2002). Improving growth and chemical composition of Myrtus communis grown under soil salinity conditions by polyamines foliar application. Proceedings of the Minia. 1st Conference Agriculture Environment Science Minia, March 25-28.  Egypt, pp: 1697-1720
Hirich, A., Choukr‐Allah, R. and Jacobsen, S. E. (2014). Quinoa in Morocco–effect of sowing dates on development and yield. Journal of Agronomy and Crop Science, 200(5), 371-377.
Hunt, R. (1978). Plant Growth Analysis. The institute of biology’s studies. Edward Arnold, London, UK. 96( 37).
Heidari, M., H., Nadeyan, A. Bakhshandeh, Kh. Alemisaeid and G. Fathi. (2007). Effects of salinity and nitrogen rates on osmotic adjustment and accumulation of mineral nutrients in wheat. Journal of crop production and processing. 40:193-211. (In Farsi)
Hariadi, Y., Marandon, K., Tian, Y., Jacobsen, S. E. and Shabala, S. (2010). Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd) plants grown at various salinity levels. Journal of Experimental Botany, 62(1), 185-193.
Hosini, Y., Homaee, M., Karimian, N., Sadat, S. (2009). Modeling of Canola response to combined salinity and nitrogen stresses, Journal of Science and Technology of Agriculture and Natural Resources, 12(46), 721-735.
Jacobsen, S. E., Espinoza, C., and Repo-Carrasco, R. (2003). "Nutritional Value and Use of the Food Andean Crops Quinoa (Chenopodium quinoa) and Kan˜iwa (Chenopodium pallidicaule)." reviews internation 19(2), 179-189.
Jacobsen, S. E., Mujica, A. and Jensen, C. R. (2003). The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Reviews International, 19(1-2), 99-109.
Jamil, M., Rehman, S., & Rha, E. S. (2007). Salinity effect on plant growth, PSII photochemistry and chlorophyll content in sugar beet (Beta vulgaris L.) and cabbage (Brassica oleracea capitata L.). Pak. J. Bot, 39(3), 753-760.
Jodi, F., A. Tobeh, A. Ebadi, H. Mostafaee, and Sh. Jamaatisamaren. (2011). Effect ofNitrogen on yield, yield components, agronomic efficiency and nitrogen on Lentil genotypes. Electronic Journal of Plant Production. 4(4): 39-50. (In Farsi).
Kakabouki, I., Bilalis, D., Karkanis, A., Zervas, G. and Hela, D. (2014). Effects of fertilization and tillage system on growth and crude protein content of quinoa (Chenopodium quinoa Willd.): An alternative forage crop. Emirates Journal of Food and Agriculture, 18-24.
Kerepesi, I. and Galiba, G. (2000). Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Science, 40(2), 482-487.
Karimi, A., Khodaverdiloo, H., and Rasouli Sadaghiani, M. (2017). Characterisation of growth and biochemical response of Onopordum acanthium L. under lead stress as affected by microbial inoculation. Chemistry and Ecology, 33(10), 963-976.
Karimi, A., Moezzi, A., Chorom, M. and Enayatizamir, N. (2019). Chemical fractions and availability of Zn in a calcareous soil in response to biochar amendments. Journal of Soil Science and Plant Nutrition, 19(4), 851-864.
Kaul, H. P., Kruse, M., and Aufhammer, W. (2005). Yield and nitrogen utilization efficiency of the pseudocereals amaranth, quinoa, and buckwheat under differing nitrogen fertilization. European Journal of Agronomy, 22(1), 95-100.
Khajavi-Shojaei, S., Moezzi, A., Norouzi Masir, M. and Taghavi zahedkolaei, M. (2019). Study of kinetic and Isotherm for ammonium and nitrate adsorption by common reed (Phragmites australis) biochar from aqueous solution, Iranian Journal of Soil and Water Research. 50(8): 2009-2021. (In Farsi)
Koyro, H. W. and Eisa, S. S. (2008). Effect of salinity on composition, viability and germination of seeds of Chenopodium quinoa willd. Plant and Soil, 302(1-2), 79-90.
Khuzestan Water and Power Authoriy Company (Kwpa). (2011). Khuzestan province drainage management studies report.
Limon-Ortega, A. Govaerts, B. Sayre, K. D. (2008). Straw management crop rotation and nitrogen source effect on wheat grain yield and nitrogen use efficiency. Erupean Journal Agronomy. 29: 21- 28.
Long, N. V., Dolstra, O., Malosetti, M., Kilian, B., Graner, A., Visser, R. G. and van der Linden, C. G. (2013). Association mapping of salt tolerance in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 126(9), 2335-2351.
Long, N. V. (2016). Effects of salinity stress on growth and yield of quinoa. Vietnam Journal of Agricultural Sciences, 14(3), 321-27.
Mahmoud, A. H. and Sallam, S. (2017). Response of Quinoa (Chenopodium quinoa Willd) Plant to Nitrogen Fertilization and Irrigation by Saline Water. Alexandria Science Exchange Journal, 38(2), 326-334.
Malakooti, M. J. and Homaee, M. (2004). Fertility of arid and semi-arid soils. Tarbiat Modares University Press. Tehran. (In Farsi).
Marenco, R. A., Antezana-Vera, S. A., & Nascimento, H. C. S. (2009). Relationship between specific leaf area, leaf thickness, leaf water content and SPAD-502 readings in six Amazonian tree species. Photosynthetica, 47(2), 184-190.
McLean E.O. (1982). Soil pH and lime requirement. In: Page, A. L. (ed): Methods of soil analysis. Part 2. Chemical and microbiological properties. Madison, Wisconsin, USA. 199-224.
Page A.L., Miller R.H.  Keeney D.R. (1982). Method of Soil Analysis, Part II, Physical properties, ASA, SSSA, Madison, WI.
Parsa, S. kafi, M. Nassiri, M. (2009). Effects of salinity and nitrogen levels on nitrogen content of wheat cultivars (Triticum aestivum L.), Iranian Journal of Crop Research, 7(2), 112-120. (In Farsi).
Perrin AS, Probst A, Probst JL (2008) Impact of nitrogenous fertilizers on carbonate dissolution in small agricultural catchments: implications for weathering CO2 uptake at regional and global scales. Geochim Cosmochim Acta, 72: 3105–3123
Pospišil, A., Pospišil, M., Varga, B. and Svečnjak, Z. (2006). Grain yield and protein concentration of two amaranth species (Amaranthus spp.) as influenced by the nitrogen fertilization. European Journal of Agronomy, 25(3), 250-253.
Panuccio, M. R., Jacobsen, S. E., Akhtar, S. S. and Muscolo, A. (2014). Effect of saline water on seed germination and early seedling growth of the halophyte quinoa. AoB Plants, 6. Doi: 10.1093/aobpla/plu047.
Pulvento, C., Riccardi, M., Lavini, A., Iafelice, G., Marconi, E. and d’Andria, R. (2012). Yield and quality characteristics of quinoa grown in open field under different saline and non‐saline irrigation regimes. Journal of Agronomy and Crop Science, 198(4), 254-263.
Ravikovitch, S. and Porath, A. (1967). The effect of nutrients on the salt tolerance of crops. Plant and Soil, 26(1), 49-71.
Razzaghi, F. (2011). Acclimatization and agronomic performance of quinoa exposed to salinity, drought and soil-related abiotic stresses. AARHUS University, Foulum, Danmark.
Rahnama, A. (2010). Investigation of some physiological mechanisms of salinity tolerance in seven wheat cultivars. PhD in Plant PhysiologyAgronomy, Karaj Campus, University of Tehran. (In Farsi).
Rabiei, M. and Tousi Kahel, P. (2011). Effects of nitrogen and potassium fertilizer levels on nitrogen use efficiency and yield of rapeseed (Brassica napus L.) as a second crop after rice in Guilan region. Iranian Journal of Field Crop Science, 42(3), 605-615. (In Farsi).
Reddy, M. P., & Iyengar, E. R. R. (1999). Crop responses to salt stress: Seawater application and prospects. Handbook of Plant and Crop Stress. Marcel Dekker In. New York, 1041-1068.
Roggatz, U., McDonald, A. J. S., Stadenberg, I. and Schurr, U. (1999). Effects of nitrogen deprivation on cell division and expansion in leaves of Ricinus communis L. Plant, Cell and Environment, 22(1), 81-89.
Sanchez, H. B., Lemeur, R., Damme, P. V., & Jacobsen, S. E. (2003). Ecophysiological analysis of drought and salinity stress of quinoa (Chenopodium quinoa Willd.). Food Reviews International, 19(1-2), 111-119.
Soraei-tabrizi, M. (2014).  Modeling plant water uptake under conditions of simultaneous stresses of water, salinity and nitrogen. (Doctoral dissertation, Department of Water Science and Engineering, Faculty of Agriculture and Natural Resources, Islamic Azad University, Science and Research Branch, Tehran). (In Farsi).
Santos, C. V. (2004). Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae, 103(1), 93-99.
Sa-nguansak, D. A. (2004). Effect of nitrogen fertilizer on nitrogen assimilation and seed quality of Amaranth (Amaranthus spp.) and Quinoa (Chenopodium quinoa Willd) (Doctoral dissertation, Dissertation for the Degree of Doctor of Agricultural Science, University of Gottingen).
Shams, A. S. (2012, September). Response of quinoa to nitrogen fertilizer rates under sandy soil conditions. In Proc. 13th International Conf. Agron., Fac. of Agric., Benha Univ., Egypt (pp. 9-10).
Safarzadeh-Shirazi, S., Ronaghi, A. M., Gholami, A. S. and Zahedifar, M. (2010). The Influence of salinity and nitrogen on tomato fruit quality and micronutrients concentration in hydroponic culture. Journal of Science and Technology of Greenhouse Culture, 1(3), 11-22. (In Farsi).
Schulte, A. E.G., Kaul, H.P., Kruse, M. and Aufhammer, W. (2005) Yield and nitrogen utilization efficiency of the pseudo cereals amaranth, quinoa, and buck wheat under differing nitrogen fertilization. European Journal of Agronomy, 22(1), 95-100.
Soil Survey Staff. (2014). Soil taxonomy, 12th ed. Washington DC: USDANRCS, Washington DC, USA.
Talebnejad, R. and Sepaskhah, A. R. (2015). Effect of different saline groundwater depths and irrigation water salinities on yield and water use of quinoa in lysimeter. Agricultural Water Management, 148, 177-188.
Thanapornpoonpong, S. N. (2004). Effect of nitrogen fertilizer on nitrogen assimilation and seed quality of amaranth (Amaranthus spp.) and quinoa (Chenopodium quinoa Willd) (Doctoral dissertation, Verlag nicht ermittelbar).
Thanapornpoonpong, S. N., Vearasilp, S., Pawelzik, E. and Gorinstein, S. (2008). Influence of various nitrogen applications on protein and amino acid profiles of amaranth and quinoa. Journal of Agricultural and Food Chemistry, 56(23), 11464-11470.
Thomas, J. R. and Langdale, G. W. (1980). Ionic balance in coastal bermudagrass [Cynodon dactrylon] influenced by nitrogen fertilization and soil salinity, Agronomy Journal, 72(3), 449-452.
Wilson, C., Read, J. J. and Abo-Kassem, E. (2002). Effect of mixed-salt salinity on growth and ion relations of a quinoa and a wheat variety. Journal of Plant Nutrition, 25(12), 2689-2704.
Wang, W. X., Vinocur, B., Shoseyov, O. and Altman, A. (2000). Biotechnology of plant osmotic stress tolerance physiological and molecular considerations. In IV International Symposium on In Vitro Culture and Horticultural Breeding. 560 (pp. 285-292).
Yazar, A., Incekaya, Ç., Sezen, S. M. and Jacobsen, S. E. (2015). Saline water irrigation of quinoa (Chenopodium quinoa) under Mediterranean conditions. Crop and Pasture Science, 66(10), 993-1002.
Zangani, A., Kashani, A., Fathi, G. H. and Meskarbashi, M. (2007). Effect of different nitrogen levels on yield andyield components of two cultivars of rapeseed quantity and quality in Ahwaz. Journal of Agriculture Sciences. 25(1): 39-45. (In Farsi).
Zhao, D., Reddy, K. R., Kakani, V. G. and Reddy, V. R. (2005). Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. European journal of agronomy, 22(4), 391-403.