بررسی رابطه‌ی خشکسالی هیدرولوژیکی در واکنش به خشکسالی هواشناسی و اثرات مخزن (مطالعه موردی: حوضه آبریز زاینده‌رود)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد آبیاری و زهکشی-گروه مهندسی آب - دانشکده کشاورزی- دانشگاه اراک- ارارک- ایران

2 استادیار، مهندسی آب - دانشکده کشاورزی- دانشگاه اراک- اراک- ایران

3 استادیار- مهندسی آب- دانشکده کشاورری- دانشگاه اراک- اراک- ایران

4 استادیار- گروه علوم دامی - دانشکده کشاورزی- دانشگاه اراک- اراک- ایران

چکیده

با توجه به وقوع خشکسالی هیدرولوژیکی بعد از خشکسالی هواشناسی، تعیین رابطه زمانی بین این دو خشکسالی امری ضروری است. در این مطالعه، حوضه­ی آبریز زاینده­رود در قسمت مرکزی ایران به­عنوان منطقه مطالعاتی انتخاب گردید. ایستگاه­های منتخب در این حوضه با توجه به موقعیت و روند داده‌های بارش آنها، ایستگاه دامنه فریدن، ایستگاه قلعه شاهرخ (بالادست سد) و ایستگاه پل زمان­خان (پایین‌دست سد) در نظر گرفته شده است. در ابتدا بر اساس داده­های ماهانه­ی بارش و جریان طی سال­های 1360 تا 1389، سری­های شاخص بارش استاندارد (SPI) و شاخص جریان استاندارد (SSI) (به ترتیب نشان­دهنده خشکسالی هواشناسی و خشکسالی هیدرولوژیکی)، هر یک با دوره زمانی 3 ماهه محاسبه شدند. سپس با استفاده از تئوری ران ویژگی­های خشکسالی هواشناسی و هیدرولوژیکی، از جمله مدت زمان و مقدار خشکسالی شناسایی گردید. در ادامه با استفاده از نرم­افزار R و برنامه­نویسی در آن،‌ بهترین مدل برای بررسی رابطه بین خشکسالی هواشناسی و هیدرولوژیکی مورد پردازش قرار گرفت. با توجه به تعداد نمونه­ها،‌ مدل اعتبارسنجی هم شد. رابطه­ای که خشکسالی هیدرولوژیکی به خشکسالی هواشناسی واکنش نشان می­دهد با استفاده از یک مدل تابع غیرخطی در ایستگاه قلعه شاهرخ و ایستگاه پل زمان­خان که به ترتیب شرایط بدون مخزن و شرایط تحت تأثیر مخزن را نشان می­دهد، ایجاد می­گردد. نتایج نشان داد که یک رابطه غیر­خطی بین خشکسالی هیدرولوژیکی و خشکسالی هواشناسی وجود دارد و آستانه­ای که در آن خشکسالی هیدرولوژیکی شروع به واکنش به خشکسالی هواشناسی می‌کند با توجه به مدل تابع غیر­خطی بدست می­آید. مدل تابع نمایی با داشتن شاخص­های اعتبارسنجی مناسب و همچنین ضریب  بالا در هر دو ایستگاه، به­عنوان بهترین مدل انتخاب شد. مدت و مقدار خشکسالی هیدرولوژیکی در ایستگاه قلعه شاهرخ به­ترتیب برابر 7/1 و 9/1 است و همچنین مدت و مقدار این خشکسالی در ایستگاه پل زمان­خان (تحت تأثیر مخزن سد) برابر 55/0 و 45/1 است. در اصل زمان وقوع خشکسالی هیدرولوژیکی در پایین‌دست سریع­تر اتفاق خواهد افتاد. این مطالب نشان داد که فعالیت­های عملیاتی مخزن سد زاینده­رود به­طور قابل‌توجهی مدت و مقدار خشکسالی هیدرولوژیکی را نسبت به شرایط بدون مخزن، کاهش می­دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Hydrological and Meteorological Drought Relationship and Reservoir Impacts (Case Study: Zayandeh Rood River Basin)

نویسندگان [English]

  • zahra saedi 1
  • mahnoosh Moghaddasi 2
  • Shahla Paimozd 3
  • Amir Hossein Farahani 4
1 Ms.C.Student of Irrigaion and drainage- Water Engineerimg- Faculty of AGriculture- Arak Unicersity-Arak-Iran.
2 Assistant Professor-Water Engineering-Faculty of Agriculture-Arak University-Arak- Iran
3 Assistant Professor-Water Engineering-Faculty of Agriculture-Arak University-Arak- Iran
4 Assistant Professor-Animal Science-Faculty of Agriculture-Arak University-Arak- Iran
چکیده [English]

Regarding the occurrence of hydrological drought after the meteorological drought, determining the relationship between these two droughts is necessary. In this study, the Zayandehrood Basin in the central part of Iran was selected as the study area. Selected stations in this basin; Damane Fereydan station, Ghaleh Shahrokh station (upstream of dam) and Zamankhan bridge station (downstream of dam) were considered according to their location and trend of precipitation data. Initially, on the basis of monthly rainfall and flow data from 1360 to 1389, the standard precipitation index (SPI) and the standard flow index (SSI) (Meteorological droughts and hydrological drought, respectively), each with a three-month period were calculated. Then using the Run theory, the meteorological and hydrological drought characteristics, including the duration and magnitude of drought were identified. In the following, using R software and programming in it, the best model was sought to investigate the relationship between meteorological and hydrological drought. According to the number of samples, the model was also validated. The relationship in which a hydrological drought reacts to the meteorological drought is created using a nonlinear function model in Qaleh Shahrokh and Zaman Khan Bridge stations, which show the condition without the reservoir and the condition affected by the reservoir, respectively. The results showed that there is a nonlinear relationship between hydrological drought and meteorological drought and the threshold at which a hydrological drought begins to react to meteorological drought is achieved with respect to the nonlinear function model. The exponential function model with the appropriate validation indexes as well as high coefficients in both stations was selected as the best model. The duration and magnitude of hydrological drought at Qaleh Shahrokh station is 1.7 and 1.9, respectively. Also, the duration and magnitude of this drought at the Zaman Khan Bridge (under the influence of the dam reservoir) is 0.55 and 1.45. Originally, the time of occurrence of hydrological drought in the downstream of the dam will be occurred faster. These findings indicated that the operational activities of Zayandeh Rud reservoir significantly reduced the duration and amount of hydrological drought as compared to non-reservoir conditions.

کلیدواژه‌ها [English]

  • Hydrological and meteorological drought
  • Reservoir
  • Early warning
  • Drought index thresholds

Alavi Nia, H., Sadatinejad, j. and Abdullah, Kh. (2011). Provide a model for prediction of hydrological drought in Karoon-1 basin. Environmental Erosion Research Journal, 4(1), 45-56. (In Farsi)

Buttafuoco, G., Caloiero, T. and Coscarelli, R. (2015). Analyses of Drought Events in Calabria (Southern Italy) Using Standardized Precipition Index. Water Resource Manage, 29(2), 557-573.

Kooshki, R., Rahimi, M., Amiri, M. and Dasturani, J. (2016). Investigation of the Relationship between Meteorological and Hydrological Drought Time in the Karkheh Basin. Journal of Ecohydrology, 4(3), 687-698. (In Farsi)

Littlewood, L. G., Clarke, R. T., Collischonn, W. and Croke, B. F. W. (2007). Predicting daily streamflow using rainfall forecasts, a simple loss module and unit hydrographs: Two Brazilian catchments. Environmental Modelling and Software, 22(5), 1229-1239.

McKee, T. B., Doesken, N. J. and Kleist, J. (1993). The relationship of drought frequency and duration to time scales. In: Proceedings of the 8th Conference on Applied Climatology. American Meteorology Society, Boston, pp. 179–184.

Nash, J. E. and Sutcliffe, J. V. (1970). River flow forecasting through conceptual models I: a discussion of principles. Journal of Hydrology, 10(2), 282–290.

Shao,Y. N., Bao, Y. D., He, Y., (2011). Visible/near-infrared spectra for linear and nonlinear calibrations: a case to predict soluble solids contents and ph value in peach. Food Bioprocess Technol, 4(8), 1376–1383.

Van Loon, A. and Laaha, G. (2016). Hydrological drought severity explained by climate and catchment characteristics. Journal of Hydrology, 49(6), 3–14.

Wu, J., Chen, X., Gao, L., Yao, H., Chen, Y. and Liu, M. (2016). Response of Hydrological Drought to Meteorological Drought under the Influence of Large Reservoir. Journal of  Meteorology, 56(2), 1-11.

Wu, J., Chen, X., Yao, H., Gao, L., Chen, Y. and Li, M. (2017). Non-linear relationship of hydrological drought responding to meteorological drought and impact of a large reservoir. Journal of Hydrology, 551(4), 495–507.

Yevjevich, V. (1967). An objective approach to definitions and investigations of continental hydrologic droughts. Journal of Meteorology, 36(5), 41-50.

Zhu, Y., Wang, W., Singh, V. and Liu, Y. (2016). Combined use of meteorological drought indices at multi-time scales for improving hydrological drought detection. Science of the Total Environment, 571(4), 1058-1068.