برآورد رواناب با استفاده از مدل IHACRES بر اساس‌ داده‌های ماهواره‌ای CHIRPS و مدل‌های CMIP5 (مطالعه موردی: حوضه آبخیز گرگانرود-منطقه آق‌قلا)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار آب و هواشناسی، دانشگاه شهید بهشتی، دانشکده علوم زمین، تهران

2 دانشجوی دکتری آب و هواشناسی شهری، دانشگاه شهید بهشتی، دانشکده علوم زمین، تهران

3 کارشناس ارشد آب و هواشناسی، دانشگاه شهید بهشتی، دانشکده علوم زمین، تهران، ایران

چکیده

حوضه­ آبخیز یک سامانه هیدرولوژیکی پویا به لحاظ زمانی-مکانی است؛ بنابراین روند تبدیل بارش به رواناب نیز بسیار پیچیده است. مدل­های هیدرولوژیکی با توان بالقوه­ خود، ابزارهای کارآمدی به­ویژه تحت شرایط تغییرات آب و هوایی محسوب می­شوند. هدف از این مطالعه برآورد رواناب حوضه آبخیز گرگانرود-منطقه آق­قلا با استفاده از مدل نیمه توزیعی IHACRES است. به این منظور داده­های ایستگاه همدید گرگان، ایستگاه هیدرومتری آق­قلا، چهار مدل CanESM2، GFDL-CM3، HadGEM2 و MRI-CGCM3 از مجموعه مدل­های CMIP5 تحت روش­های ریزمقیاس­نمایی آماری SDSM و MarkSimGCM و داده­های ماهواره­ای بارش با توان تفکیک بالا CHIRPS (05/0 ×05/0 درجه قوسی) به‌کارگیری شدند. در ادامه از آماره­های R2، MBE و RMSE برای صحت­سنجی و از آزمون­های ناپارامتریکMann-Kendall  و Sen’s Slope  برای ارزیابی روند و شیب روند داده­ها استفاده شد. نتایج نشان داد مدل CanESM2 ریزگردانی شده با SDSM از عملکرد بالاتری نسبت به مدل­های دیگر برخوردار است. همچنین داده­های CHIRPS کارایی مناسبی را برای مطالعه بارش نشان­ داده­اند. رفتار آماری بلندمدت دبی در آق­قلا نشان داد فروردین و اردیبهشت بیشینه دبی را در بین ماه­های مختلف سال دارا می­باشند. مدل IHACRES هر چند که در پیش­بینی دبی­های بیشینه نتوانسته دقت مناسبی را ارائه دهد اما در مجموع دارای دقت قابل قبولی است. بارش-رواناب در دوره مدل­سازی شده آینده تحت سناریو­های RCP2.6 و RCP4.5 روند کاهشی و تحت سناریو RCP8.5 روند جزئی افزایشی خواهد داشت. همچنین انتظار می­رود با افزایش بارش­های حدی رخدادهای سیلابی در منطقه نیز روندی افزایشی داشته باشند.

کلیدواژه‌ها


عنوان مقاله [English]

Runoff Estimation Using IHACRES Model Based on CHIRPS Satellite Data and CMIP5 Models (Case Study: Gorganroud Basin- Aq Qala Area)

نویسندگان [English]

  • Mahmoud Ahmadi 1
  • AbbasAli Dadashi Roudbari 2
  • Aida Deyrmajai 3
1 Associate professor of Climatology Shahid Beheshti University The Faculty of Earth Sciences Tehran,Iran
2 Ph.D Student of Urban Climatology, Shahid Beheshti University, Tehran, Iran
3 MSC of Climatology, Shahid Beheshti University, Tehran, Iran
چکیده [English]

The catchment is a temporal-spatial dynamic hydrologic system; therefore, the process of rainfall-runoff is complicated. The hydrological models with their potentials are efficient tools to estimate runoff, especially under the conditions of climate change. The purpose of this study is to estimate runoff of Gorganroud Basin, located in the Aq Qala region, using the IHACRES semi-distributive model. For this purpose, the data of Gorgan Synoptic and Aq Qala Hydrometry Stations, four models; CanESM2, GFDL-CM3, HadGEM2, and MRI-CGCM3 from the CMIP5 models were applied under the SDSM and MarkSimGCM Statistical Downscaling methods. High-resolution CHIRPS precipitation data (0.05 × 0.05 arc degree) were also used. The statistical indices of R2, MBE, and RMSE were used for validation and non-parametric Mann-Kendall and Sen's Slope tests were used to evaluate the trend and slope trend of the data process. The results showed that the CanESM2 model downscaled with SDSM has a higher performance than the other models. CHIRPS data has also shown a good performance for rainfall studies. The long-term statistical behavior of discharge in Aq Qala showed that April and May have the maximum discharges among the other months. Although IHACRES model did not show an appropriate performance for prediction of maximum discharges, but in general, it's performance is acceptable. The rainfall-runoff trend during the proposed future period under the RCP2.6 and RCP4.5 scenarios will be reduced, whereas, it will be increased under the RCP8.5 scenario. Expected flood events in the region are also expected to show an increment trend with respect to the rainfall increment.

کلیدواژه‌ها [English]

  • Rainfall-runoff
  • CMIP5 models
  • CHIRPS satellite data
  • IHACRES model
  • Aq Qala
Abushandi, E., & Merkel, B. (2013). Modelling rainfall runoff relations using HEC-HMS and IHACRES for a single rain event in an arid region of Jordan. Water Resources Management, 27(7), 2391-2409.
Ahmadi, M., Moeini, A., Ahmadi, H., Motamedvaziri, B., & Zehtabiyan, G. R. (2019). Comparison of the performance of SWAT, IHACRES and artificial neural networks models in rainfall-runoff simulation (case study: Kan watershed, Iran). Physics and Chemistry of the Earth, Parts A/B/C.
Ahooghalandari, M., Khiadani, M., & Kothapalli, G. (2015). Assessment of Artificial Neural Networks and IHACRES models for simulating streamflow in Marillana catchment in the Pilbara, Western Australia. Australasian Journal of Water Resources, 19(2), 116-126.
Ashofteh, P. & Massah Bavani, A. (2009). Uncertainty of Climate Change Impact on the Flood Regime Case Study: Aidoghmoush Basin, East Azerbaijan, Iran. Iran Water Resources Research, 5(2), 27-39. [In Farsi].
Ashouri, H., Hsu, K. L., Sorooshian, S., Braithwaite, D. K., Knapp, K. R., Cecil, L. D. & Prat, O.P. (2015). FARSIN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bulletin of the American Meteorological Society. 96(1), 69-83.
Borzì, I., Bonaccorso, B., & Fiori, A. (2018). A Modified IHACRES Rainfall–Runoff Model for Predicting Hydrologic Response of a River Basin System with a Relevant Groundwater Component. In Multidisciplinary Digital Publishing Institute Proceedings (Vol. 7, No. 1, p. 24).
Chen, C., Chen, Q., Duan, Z., Zhang, J., Mo, K., Li, Z., & Tang, G. (2018). Multiscale comparative evaluation of the GPM IMERG v5 and TRMM 3B42 v7 precipitation products from 2015 to 2017 over a climate transition area of China. Remote Sensing, 10(6), 944.
Chen, H., Xu, C. Y., & Guo, S. (2012). Comparison and evaluation of multiple GCMs, statistical downscaling and hydrological models in the study of climate change impacts on runoff. Journal of hydrology, 434, 36-45.
Clark, M. P., Slater, A. G., Rupp, D. E., Woods, R. A., Vrugt, J. A., Gupta, H. V., ... & Hay, L. E. (2008). Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences between hydrological models. Water Resources Research, 44(12).
Croke, B.F. & Jakeman, A.J. (2008). Use of the IHACRES rainfall-runoff model in arid and semi-arid regions. Hydrological modelling in arid and semi-arid areas, 41-48.
Croke, B.F., & Jakeman, A.J. (2004). A catchment moisture deficit module for the IHACRES rainfall-runoff model. Environmental Modelling & Software, 19(1), 1-5.
Dakhlaoui, H., Ruelland, D., Tramblay, Y., & Bargaoui, Z. (2017). Evaluating the robustness of conceptual rainfall-runoff models under climate variability in northern Tunisia. Journal of hydrology, 550, 201-217.
Duhan, D., & Pandey, A. (2013). Statistical analysis of long term spatial and temporal trends of precipitation during 1901–2002 at Madhya Pradesh, India. Atmospheric Research, 122, 136-149.
Dye, P. J., & Croke, B. F. (2003). Evaluation of streamflow predictions by the IHACRES rainfall-runoff model in two South African catchments. Environmental Modelling & Software, 18(8-9), 705-712.
Evans, J., & Schreider, S. (2002). Hydrological impacts of climate change on inflows to Perth, Australia. Climatic Change, 55(3), 361-393.
Fallah-Ghalhari, G., Shakeri, F., & Dadashi-Roudbari, A. (2019). Impacts of climate changes on the maximum and minimum temperature in Iran. Theoretical and Applied Climatology, 1-24.
Farzin, S. & Alizadeh sanami, F., (2017). Modeling and analysis of Trend in the hydrological regime of rivers (Case Study: Gorganrood River, Tamar hydrometric stations). jwmseir. 11 (37):35-45.
Fowler, K. J., Peel, M. C., Western, A. W., Zhang, L., & Peterson, T. J. (2016). Simulating runoff under changing climatic conditions: Revisiting an apparent deficiency of conceptual rainfall‐runoff models. Water Resources Research, 52(3), 1820-1846.
Funes, I., Aranda, X., Biel, C., Carbó, J., Camps, F., Molina, A. J. & Savé, R. (2016). Future climate change impacts on apple flowering date in a Mediterranean subbasin. Agricultural Water Management, 164, 19-27.
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S. & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific data, 2, 150066.
Guo, B., Zhang, J., Xu, T., Croke, B., Jakeman, A., Song, Y. & Liao, W. (2018). Applicability Assessment and Uncertainty Analysis of Multi-Precipitation Datasets for the Simulation of Hydrologic Models. Water, 10(11), 1611.
Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu, G. & Stocker, E.F. (2007). The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of hydrometeorology, 8(1), 38-55.
Jones, R. N., Chiew, F. H., Boughton, W. C., & Zhang, L. (2006). Estimating the sensitivity of mean annual runoff to climate change using selected hydrological models. Advances in Water Resources, 29(10), 1419-1429.
Kavetski, D., Kuczera, G., & Franks, S.W. (2006). Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory. Water resources research, 42(3).
kayhanpanah, M., Zare Bidaki, R., Bazrafshan, J. (2017). Flow Modelling in Great Karun Sub-basins in terms of Future Climate. Iranian journal of Ecohydrology, 4(4), 1033-1047. [In Farsi].
Khajeh, S., Paimozd, S., & Moghaddasi, M. (2017). Assessing the impact of climate changes on hydrological drought based on reservoir performance indices (case study: ZayandehRud River basin, Iran). Water Resources Management, 31(9), 2595-2610.
Khazaei Moughani, S., Najafinejad, A., Azimmohseni, M., Sheikh, V.B., (2013). Spatial and Seasonal Variation of Suspended Sediment in Different Stations of Gorganroud River, Golestan Province. Journal of Waters ed Management Research. 4(7):1-15. (In Farsi).
Kheirfam, H., Mostafazadeh, R., & Sadeghi, S. H. R. (2013). Daily Discharge Prediction by Using IHACRES Model in Some Watersheds of Golestan Province. Journal of Watershed Management Research, 4(7), 114-126.
Kim, K. B., Kwon, H. H., & Han, D. (2018). Exploration of warm-up period in conceptual hydrological modelling. Journal of Hydrology, 556, 194-210.
Knutti, R., Furrer, R., Tebaldi, C., Cermak, J., & Meehl, G. A. (2010). Challenges in combining projections from multiple climate models. Journal of Climate, 23(10), 2739-2758.
Li, J., Carlson, B. E., Dubovik, O., & Lacis, A. A. (2014). Recent trends in aerosol optical properties derived from AERONET measurements. Atmospheric Chemistry and Physics, 14(22), 12271-12289.
McVicar, T. R., Roderick, M. L., Donohue, R. J., & Van Niel, T. G. (2012). Less bluster ahead? Ecohydrological implications of global trends of terrestrial near‐surface wind speeds. Ecohydrology, 5(4), 381-388.
Mirdashtovan, M., Malekian, A., Mohseni Saravi, M. (2018). Stream flow simulation using statistical downscaling of climatic data: Urmia Lake Basin. Iranian journal of Ecohydrology, 5(2), 419-431. [In Farsi].
Nazaripouya, H., Kardavany, P., Farajy Rad, A. (2016). Assessing Climate Change Impacts on Hydro-Climatic Parameters in the Dam Basin of Ekbatan, Hamedan. Iranian journal of Ecohydrology, 3(2), 181-194. [In Farsi].
Omranian, E., & Sharif, H. O. (2018). Evaluation of the global precipitation measurement (GPM) satellite rainfall products over the lower Colorado River basin, Texas. JAWRA Journal of the American Water Resources Association, 54(4), 882-898.
Ouma, P. O., Odera, P. A., & Mukundi, J. B. (2016). Spatial Modelling of Weather Variables for Plant Disease Applications in Mwea Region. Journal of Geoscience and Environment Protection, 4(05), 127.
Oyerinde, G. T., Fademi, I. O., & Denton, O. A. (2017). Modeling runoff with satellite-based rainfall estimates in the Niger basin. Cogent Food & Agriculture, 3(1), 1363340.
Panahi, E., Bafkar, A., Hafezparast, M. (2017). Assessment of management alternatives for maintaining watershed sustainability in the climate scenarios. Iran Water Resources Research, 13(1), 139-152. [In Farsi].
Satgé, F., Xavier, A., Pillco Zolá, R., Hussain, Y., Timouk, F., Garnier, J., & Bonnet, M. P. (2017). Comparative assessments of the latest GPM mission’s spatially enhanced satellite rainfall products over the main Bolivian watersheds. Remote Sensing, 9(4), 369.
Sorooshian, S., Hsu, K. L., Gao, X., Gupta, H. V., Imam, B., & Braithwaite, D. (2000). Evaluation of FARSIN system satellite-based estimates of tropical rainfall. Bulletin of the American Meteorological Society, 81(9), 2035-2046.
Sriwongsitanon, N., & Taesombat, W. (2011). Estimation of the IHACRES model parameters for flood estimation of ungauged catchments in the upper Ping River basin. Journal of Kasetsart (Natural Science), 45, 917-931.
Teng, J., Vaze, J., Chiew, F. H., Wang, B., & Perraud, J. M. (2012). Estimating the relative uncertainties sourced from GCMs and hydrological models in modeling climate change impact on runoff. Journal of Hydrometeorology, 13(1), 122-139.
Vaze, J., Post, D. A., Chiew, F. H. S., Perraud, J. M., Viney, N. R., & Teng, J. (2010). Climate non-stationarity–validity of calibrated rainfall–runoff models for use in climate change studies. Journal of Hydrology, 394(3-4), 447-457.
Wilby, R. L., Dawson, C. W., & Barrow, E. M. (2002). SDSM—a decision support tool for the assessment of regional climate change impacts. Environmental Modelling & Software, 17(2), 145-157.
Xu, Z. X., Takeuchi, K., Ishidaira, H., & Li, J. Y. (2005). Long‐term trend analysis for precipitation in Asian Pacific FRIEND river basins. Hydrological Processes: An International Journal, 19(18), 3517-3532.
Yaghobi, M. & Massah Bavani, A. (2016). Comparison and Evaluation of Different Sources of Uncertainty in the Study of Climate Change Impact on Runoff in Semi-arid Basins (Case study: Azam Harat River Basin). Iran Water Resources Research, 11(3), 113-130. [In Farsi].
Yin, J., He, F., Xiong, Y. J., & Qiu, G. Y. (2017). Effects of land use/land cover and climate changes on surface runoff in a semi-humid and semi-arid transition zone in northwest China. Hydrology and Earth System Sciences, 21(1), 183-196.