تلفیق تصاویر دمای سطح زمین مودیس و لندست-8 با استفاده از مدل تلفیق مکانی-زمانی تصویر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری هواشناسی کشاورزی/گروه علوم و مهندسی آب/ دانشکده کشاورزی/ دانشگاه فردوسی مشهد

2 استاد گروه مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران.

چکیده

دستیابی به تصاویر ماهواره‌ای با قدرت تفکیک مکانی و زمانی بالا به‌صورت هم‌زمان یکی از چالش­های جدی محققان در حوزه سنجش ‌از دور و کاربردهای آن بوده است. در سال­های اخیر، محققان تلاش جدی برای حل این مسئله انجام داده­اند. استفاده از تکنیک تلفیق مکانی و زمانی تصاویر، ایده‌ای بوده که در چند سال اخیر مورد توجه بسیاری قرار گرفته است. در این مطالعه با استفاده از الگوریتم تلفیق مکانی-زمانی تصویر (STI-FM) و تصاویر دمای سطح زمین سنجنده مودیس، تولید تصاویر شبه­لندست دمای سطح زمین در بازه­های کمتر از قدرت تفکیک زمانی لندست (16 روزه) و بر روی منطقه‌ای از اراضی زمینی مختلف، مورد بررسی قرار گرفت. الگوریتم STI-FM شامل دو گام اصلی می‌باشد. ابتدا ضرایب رابطه خطی بین دو تصویر دمای سطح زمین مودیس در زمان‌های 1 و 2 تعیین می‌شود و در گام دوم این ضرایب به تصویر دمای سطح زمین لندست در زمان 1 اعمال می‌شود تا تصویر شبه­لندست در زمان 2، پیش‌بینی شود. نتایج نشان داد که رابطه خطی قوی بین دو تصویر مودیس در زمان‌های 1 و 2 وجود دارد (ضرایب تعیین 85/0 و 95/0). ارزیابی کیفی و کمی تصاویر مصنوعی دمای سطح زمین انجام شد؛ و مشخص شد که توافق بصری بالا و رابطه قوی بین تصاویر دمای سطح زمین واقعی و مصنوعی بر روی پوشش­های مختلف زمینی وجود دارد؛ ضرایب R2 و RMSE به­ترتیب در محدوده 74/0-94/0 و 44/1-52/2 قرار گرفتند.

کلیدواژه‌ها


عنوان مقاله [English]

Fusion of MODIS and Landsat-8 Land Surface Temperature Images Using Spatio-Temporal Image Fusion Model

نویسندگان [English]

  • Morteza Kaffash 1
  • Seyed Hossein Sanaei-Nejad 2
1 PhD Student of Agricultural Meteorology, Water Engineering Department/Agriculture Faculty/Ferdowsi University of Mashhad
2 Professor, Department of Water Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
چکیده [English]

Achieving satellite images with high simultaneously spatial-temporal resolution has been one of the serious challenges faced by researchers in the field of remote sensing and its applications. In recent years, researchers have made serious efforts to solve the problem. In this study, producing Landsat like land surface temperature images with less than 16 day temporal resolution and over different land covers, using spatio-temporal image fusion algorithm (STI-FM) and MODIS Land surface temperature images, was investigated. The STI-FM technique consist of two main steps. First establishing a linear relationship between two consecutive MODIS LST images acquired at time 1 and time 2; then utilizing the above mentioned relationship as a function of a Landsat-8 LST image acquired at time 1 in order to predict a synthetic Landsat -8 LST image at time 2. The results showed strong linear relationship between the two consecutive MODIS images at times 1 and 2 (R2 in the range 0.85-0.95). The synthetic LST images were evaluated qualitatively and quantitatively and it was found that there is a high visual and strong agreements with the actual Landsat-8 LST images over different land covers. For example R2 and RMSE values were ranged 0.74-0.94 and 1.44-2.52, respectively.

کلیدواژه‌ها [English]

  • spatio-temporal fusion
  • MODIS
  • Landsat
  • Land surface temperature
  • remote sensing
Avdan, U., & Jovanovska, G. (2016). Algorithm for Automated Mapping of Land Surface Temperature Using LANDSAT 8 Satellite Data. Journal of Sensors, 2016, 1–8.
Bosilovich, M. G. (2006). A comparison of MODIS land surface temperature with in situ observations. Geophysical Research Letters, 33, L20112.
Coll, C., Wan, Z., & Galve, J. M. (2009). Temperature-based and radiance-based validations of the V5 MODIS land surface temperature product. Journal of Geophysical Research Atmospheres, 114, D20102.
Duan, S.-B., Li, Z.-L., Tang, B.-H., Wu, H., & Tang, R. (2014). Generation of a time-consistent land surface temperature product from MODIS data. Remote Sensing of Environment, 140, 339–349.
Emelyanova, I. V., McVicar, T. R., Van Niel, T. G., Li, L. T., & van Dijk, A. I. J. M. (2013). Assessing the accuracy of blending Landsat-MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: A framework for algorithm selection. Remote Sensing of Environment, 133, 193–209.
Feng Gao, Masek, J., Schwaller, M., & Hall, F. (2006). On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE Transactions on Geoscience and Remote Sensing, 44, 2207–2218.
Feng, M., Huang, C., Channan, S., Vermote, E. F., Masek, J. G., & Townshend, J. R. (2012). Quality assessment of Landsat surface reflectance products using MODIS data. Computers & Geosciences, 38, 9–22.
Feng, M., Sexton, J. O., Huang, C., Masek, J. G., Vermote, E. F., Gao, F., … Townshend, J. R. (2013). Global surface reflectance products from Landsat: Assessment using coincident MODIS observations. Remote Sensing of Environment, 134, 276–293.
Fu, D., Chen, B., Wang, J., Zhu, X., & Hilker, T. (2013a). An Improved Image Fusion Approach Based on Enhanced Spatial and Temporal the Adaptive Reflectance Fusion Model. Remote Sensing, 5, 6346–6360.
Fu, D., Chen, B., Wang, J., Zhu, X., & Hilker, T. (2013b). An Improved Image Fusion Approach Based on Enhanced Spatial and Temporal the Adaptive Reflectance Fusion Model. Remote Sensing, 5, 6346–6360.
Guan, X., Liu, G., Huang, C., Liu, Q., Wu, C., Jin, Y., & Li, Y. (2017a). An Object-Based Linear Weight Assignment Fusion Scheme to Improve Classification Accuracy Using Landsat and MODIS Data at the Decision Level. IEEE Transactions on Geoscience and Remote Sensing, 55, 6989–7002.
Guan, X., Liu, G., Huang, C., Liu, Q., Wu, C., Jin, Y., & Li, Y. (2017b). An Object-Based Linear Weight Assignment Fusion Scheme to Improve Classification Accuracy Using Landsat and MODIS Data at the Decision Level. IEEE Transactions on Geoscience and Remote Sensing, 55, 6989–7002.
Guillevic, P. C., Bork-Unkelbach, A., Gottsche, F. M., Hulley, G., Gastellu-Etchegorry, J.-P., Olesen, F. S., & Privette, J. L. (2013). Directional Viewing Effects on Satellite Land Surface Temperature Products Over Sparse Vegetation Canopies—A Multisensor Analysis. IEEE Geoscience and Remote Sensing Letters, 10, 1464–1468.
Hazaymeh, K., Hassan, Q. K., Pinheiro, A., Xiong, Y., & Qiu, G. (2015). Fusion of MODIS and Landsat-8 Surface Temperature Images: A New Approach. PLOS ONE, 10, e0117755.
Hilker, T., Wulder, M. A., Coops, N. C., Linke, J., McDermid, G., Masek, J. G., … White, J. C. (2009). A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS. Remote Sensing of Environment, 113, 1613–1627.
Hulley, G. C., & Hook, S. J. (2009). Intercomparison of versions 4, 4.1 and 5 of the MODIS Land Surface Temperature and Emissivity products and validation with laboratory measurements of sand samples from the Namib desert, Namibia. Remote Sensing of Environment, 113, 1313–1318.
Inamdar, A. K., French, A., Hook, S., Vaughan, G., & Luckett, W. (2008). Land surface temperature retrieval at high spatial and temporal resolutions over the southwestern United States. Journal of Geophysical Research, 113, D07107.
Kustas, W. P., Norman, J. M., Anderson, M. C., & French, A. N. (2003). Estimating subpixel surface temperatures and energy fluxes from the vegetation index–radiometric temperature relationship. Remote Sensing of Environment, 85, 429–440.
Liu, H. (2012). Enhancing temporal resolution of satellite imagery for public health studies: A case study of West Nile Virus outbreak in Los Angeles in 2007. Remote Sensing of Environment, 117, 57–71.
Liu, X., Deng, C., Wang, S., Huang, G.-B., Zhao, B., & Lauren, P. (2016). Fast and Accurate Spatiotemporal Fusion Based Upon Extreme Learning Machine. IEEE Geoscience and Remote Sensing Letters, 13, 2039–2043.
Maimaitiyiming, M., Ghulam, A., Tiyip, T., Pla, F., Latorre-Carmona, P., Halik, Ü., … Caetano, M. (2014). Effects of green space spatial pattern on land surface temperature: Implications for sustainable urban planning and climate change adaptation. ISPRS Journal of Photogrammetry and Remote Sensing, 89, 59–66.
Meng, J., Du, X., & Wu, B. (2013). Generation of high spatial and temporal resolution NDVI and its application in crop biomass estimation. International Journal of Digital Earth, 6, 203–218.
Moosavi, V., Talebi, A., Mokhtari, M. H., Shamsi, S. R. F., & Niazi, Y. (2015). A wavelet-artificial intelligence fusion approach (WAIFA) for blending Landsat and MODIS surface temperature. Remote Sensing of Environment, 169, 243–254.
Nichol, J. (2009). An Emissivity Modulation Method for Spatial Enhancement of Thermal Satellite Images in Urban Heat Island Analysis. Photogrammetric Engineering & Remote Sensing, 75, 547–556.
Oguro, Y., Ito, S., & Tsuchiya, K. (2011). Comparisons of Brightness Temperatures of Landsat-7/ETM+ and Terra/MODIS around Hotien Oasis in the Taklimakan Desert. Applied and Environmental Soil Science, 2011, 1–11.
Olivera-Guerra, L., Mattar, C., Merlin, O., Durán-Alarcón, C., Santamar’ia-Artigas, A., & Fuster, R. (2017). An operational method for the disaggregation of land surface temperature to estimate actual evapotranspiration in the arid region of Chile. ISPRS Journal of Photogrammetry and Remote Sensing, 128, 170–181.
Roy, D. P., Ju, J., Lewis, P., Schaaf, C., Gao, F., Hansen, M., & Lindquist, E. (2008). Multi-temporal MODIS–Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data. Remote Sensing of Environment, 112, 3112–3130.
Shen, H., Wu, P., Liu, Y., Ai, T., Wang, Y., & Liu, X. (2013). A spatial and temporal reflectance fusion model considering sensor observation differences. International Journal of Remote Sensing, 34, 4367–4383.
Singh, D. (2011). Generation and evaluation of gross primary productivity using Landsat data through blending with MODIS data. International Journal of Applied Earth Observation and Geoinformation, 13, 59–69.
Son, N. T., Chen, C. F., Chen, C. R., Chang, L. Y., & Minh, V. Q. (2012). Monitoring agricultural drought in the Lower Mekong Basin using MODIS NDVI and land surface temperature data. International Journal of Applied Earth Observation and Geoinformation, 18, 417–427.
Srivastava, P. K., Han, D., Ramirez, M. R., & Islam, T. (2013). Machine Learning Techniques for Downscaling SMOS Satellite Soil Moisture Using MODIS Land Surface Temperature for Hydrological Application. Water Resources Management, 27, 3127–3144.
Volcani, A., Karnieli, A., & Svoray, T. (2005). The use of remote sensing and GIS for spatio-temporal analysis of the physiological state of a semi-arid forest with respect to drought years. Forest Ecology and Management, 215, 239–250.
Wan, Z., Zhang, Y., Zhang, Q., & Li, Z.-L. (2004). Quality assessment and validation of the MODIS global land surface temperature. International Journal of Remote Sensing, 25, 261–274.
Wan, Zhengming. (2008). New refinements and validation of the MODIS Land-Surface Temperature / Emissivity products. Remote Sensing of Environment, 112, 59–74.
Wan, Zhengming. (2014). New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sensing of Environment, 140, 36–45.
Wang, K., Wan, Z., Wang, P., Sparrow, M., Liu, J., & Haginoya, S. (2007). Evaluation and improvement of the MODIS land surface temperature/emissivity products using ground-based measurements at a semi-desert site on the western Tibetan Plateau. International Journal of Remote Sensing, 28, 2549–2565.
 
Zakšek, K., & Oštir, K. (2012). Downscaling land surface temperature for urban heat island diurnal cycle analysis. Remote Sensing of Environment, 117, 114–124.
Zhan, W., Chen, Y., Zhou, J., Wang, J., Liu, W., Voogt, J., … Li, J. (2013). Disaggregation of remotely sensed land surface temperature: Literature survey, taxonomy, issues, and caveats. Remote Sensing of Environment, 131, 119–139.
Zhang, W., Li, A., Jin, H., Bian, J., Zhang, Z., Lei, G., … Huang, C. (2013). An Enhanced Spatial and Temporal Data Fusion Model for Fusing Landsat and MODIS Surface Reflectance to Generate High Temporal Landsat-Like Data. Remote Sensing, 5, 5346–5368.
Zhu, X., Chen, J., Gao, F., Chen, X., & Masek, J. G. (2010). An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sensing of Environment, 114, 2610–2623.
Zhu, X., Helmer, E. H., Gao, F., Liu, D., Chen, J., & Lefsky, M. A. (2016). A flexible spatiotemporal method for fusing satellite images with different resolutions. Remote Sensing of Environment, 172, 165–177.