Amani, M., Parsian, S., MirMazloumi, S. M., & Aieneh, O. (2016). Two new soil moisture indices based on the NIR-red triangle space of Landsat-8 data. International Journal of Applied Earth Observation and Geoinformation, 50, 176-186.
Babaeian, E., Homaee, M., Montzka, C., Vereecken, H., Norouzi, A. A., & van Genuchten, M. T. (2016). Soil moisture prediction of bare soil profiles using diffuse spectral reflectance information and vadose zone flow modeling. Remote Sensing of Environment, 187, 218-229.
Carlson, T. (2007). An overview of the" triangle method" for estimating surface evapotranspiration and soil moisture from satellite imagery. Sensors, 7(8), 1612-1629.
Carlson, T. N., Capehart, W. J., & Gillies, R. R. (1995). A new look at the simplified method for remote sensing of daily evapotranspiration. Remote Sensing of Environment, 54(2), 161-167.
Carlson, T. N., Gillies, R. R., & Perry, E. M. (1994). A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote sensing reviews, 9(1-2), 161-173.
Chen, N., He, Y., & Zhang, X. (2017). NIR-Red Spectra-Based Disaggregation of SMAP Soil Moisture to 250 m Resolution Based on OzNet in Southeastern Australia. Remote Sensing, 9(1), 51.
Das, N. N., & Mohanty, B. P. (2006). Root zone soil moisture assessment using remote sensing and vadose zone modeling. Vadose Zone Journal, 5(1), 296-307.
Ghulam, A., Li, Z. L., Qin, Q., Tong, Q., Wang, J., Kasimu, A., & Zhu, L. (2007). A method for canopy water content estimation for highly vegetated surfaces-shortwave infrared perpendicular water stress index. Science in China Series D: Earth Sciences, 50(9), 1359-1368.
Ghulam, A., Li, Z. L., Qin, Q., Yimit, H., & Wang, J. (2008). Estimating crop water stress with ETM+ NIR and SWIR data. Agricultural and Forest Meteorology, 148(11), 1679-1695.
Ghulam, A., Qin, Q., & Zhan, Z. (2007). Designing of the perpendicular drought index. Environmental Geology, 52(6), 1045-1052.
Jackson, R. D. (1983). Spectral indices in n-space. Remote Sensing of Environment, 13(5), 409-421.
Hernandez, J. M., Bar-Yosef, B., & Kafkafi, U. (1991). Effect of surface and subsurface drip fertigation on sweet corn rooting, uptake, dry matter production and yield. Irrigation Science, 12(3), 153-159.
Liu, F., Qin, Q., Chen, C., Feng, H., Zhang, N., & Chai, L. (2011, July). Designing an improved soil moisture index in the near-infrared and shortwave plane. In Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International (pp. 3074-3077). IEEE.
Liu, P. J., Zhang, L., Kurban, A., Chang, P., Li, L., & Polat Zhao, B. (1997). A method for monitoring soil water contents using satellite remote sensing. J. Remote Sens, 1(2), 135-138.
Mahmood, R., & Hubbard, K. G. (2007). Relationship between soil moisture of near surface and multiple depths of the root zone under heterogeneous land uses and varying hydroclimatic conditions. Hydrological Processes: An International Journal, 21(25), 3449-3462.
Mobasheri, M. R., & Amani, M. (2016). Soil moisture content assessment based on Landsat 8 red, near-infrared, and thermal channels. Journal of Applied Remote Sensing, 10(2), 026011.
Mohanty, B. P., Cosh, M. H., Lakshmi, V., & Montzka, C. (2017). Soil moisture remote sensing: State-of-the-science. Vadose Zone Journal, 16(1).
Moran, M. S., Clarke, T. R., Inoue, Y., & Vidal, A. (1994). Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote sensing of environment, 49(3), 246-263.
Nemani, R., Pierce, L., Running, S., & Goward, S. (1993). Developing satellite-derived estimates of surface moisture status. Journal of Applied Meteorology, 32(3), 548-557.
Ochsner, T. E., Cosh, M. H., Cuenca, R. H., Dorigo, W. A., Draper, C. S., Hagimoto, Y., ... & Larson, K. M. (2013). State of the art in large-scale soil moisture monitoring. Soil Science Society of America Journal, 77(6), 1888-1919.
Qin, Q., Jin, C., Zhang, N., & Yang, X. (2010, July). An two-dimensional spectral space based model for drought monitoring and its re-examination. In Geoscience and Remote Sensing Symposium (IGARSS), 2010 IEEE International (pp. 3869-3872). IEEE.
Rahimzadeh-Bajgiran, P., Berg, A. A., Champagne, C., & Omasa, K. (2013). Estimation of soil moisture using optical/thermal infrared remote sensing in the Canadian Prairies. ISPRS journal of photogrammetry and remote sensing, 83, 94-103.
Richardson, A. J., & Wiegand, C. L. (1977). Distinguishing vegetation from soil background information. Photogrammetric engineering and remote sensing, 43(12), 1541-1552.
Robinson, D. A., Campbell, C. S., Hopmans, J. W., Hornbuckle, B. K., Jones, S. B., Knight, R., ... & Wendroth, O. (2008). Soil moisture measurement for ecological and hydrological watershed-scale observatories: A review. Vadose Zone Journal, 7(1), 358-389.
Sadeghi, M., Babaeian, E., Tuller, M., & Jones, S. B. (2017). The optical trapezoid model: A novel approach to remote sensing of soil moisture applied to Sentinel-2 and Landsat-8 observations. Remote sensing of environment, 198, 52-68.
Sadeghi, M., Jones, S. B., & Philpot, W. D. (2015). A linear physically-based model for remote sensing of soil moisture using short wave infrared bands. Remote Sensing of Environment, 164, 66-76.
Shafian, S., & Maas, S. J. (2015). Index of soil moisture using raw Landsat image digital count data in Texas high plains. Remote Sensing, 7(3), 2352-2372.
Shafian, S. (2014). Estimation of soil moisture status in the Texas High Plains using remote sensing (Doctoral dissertation).
Sun, H. (2016). Two-stage trapezoid: A new interpretation of the land surface temperature and fractional vegetation coverage space. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(1), 336-346.
Vereecken, H., Huisman, J. A., Bogena, H., Vanderborght, J., Vrugt, J. A., & Hopmans, J. W. (2008). On the value of soil moisture measurements in vadose zone hydrology: A review. Water resources research, 44(4).
Walker, J. P., Willgoose, G. R., & Kalma, J. D. (2001). One-dimensional soil moisture profile retrieval by assimilation of near-surface measurements: A simplified soil moisture model and field application. Journal of Hydrometeorology, 2(4), 356-373.
Yin, Z., Lei, T., Yan, Q., Chen, Z., & Dong, Y. (2013). A near-infrared reflectance sensor for soil surface moisture measurement. Computers and electronics in agriculture, 99, 101-107.
Zhan, Z., Qin, Q., Ghulan, A., & Wang, D. (2007). NIR-red spectral space based new method for soil moisture monitoring. Science in China Series D: Earth Sciences, 50(2), 283-289.
Zhang, D., Tang, R., Zhao, W., Tang, B., Wu, H., Shao, K., & Li, Z. L. (2014). Surface soil water content estimation from thermal remote sensing based on the temporal variation of land surface temperature. Remote Sensing, 6(4), 3170-3187
Zhang, H., Chen, H., Shen, S., & Zou, C. (2008, September). The application of Modified Perpendicular Drought Index (MPDI) method in drought remote sensing monitoring. In Remote Sensing and Modeling of Ecosystems for Sustainability V (Vol. 7083, p. 70831D). International Society for Optics and Photonics.
Zh. ZhiMing, Zh., QiMing. Q., Abduwasit. Gh., DongDong. W., (2007), NIR-red spectra space based new method for soil moisture monitoring, Science in China Series D Earth Sciences 50(2):283-289, DOI: 10.1007/s11430-007-2004-6