تحلیل حساسیت و ارزیابی مدل‌های فیزیکی و تجربی جذب آب ریشه در گیاه گوجه‌فرنگی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه علوم و مهندسی آب، مرکز آموزش عالی کاشمر

2 استاد، گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

3 دانشیار گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد

4 استادیار گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه جیرفت

چکیده

جذب آب توسط ریشه عامل مهمی در پیش­بینی تعرق گیاه و عملکرد محصول به شمار می­رود. به طور کلی مدل­های جذب آب ریشه به دو گروه کلان (تجربی) و خرد (فیزیکی) تقسیم­بندی می­شوند. مدل­های فیزیکی به پارامترهای هیدرولیکی بیشتری نیاز دارند، در حالی که مدل­های تجربی ساده­تر و به اطلاعات ورودی کمتری نیاز دارند. هدف از این پژوهش مقایسه عملکرد دو مدل­ تجربی و یک مدل فیزیکی برای پیش­بینی جذب آب ریشه در گیاه گوجه‌فرنگی در شرایط گلخانه­ای می­باشد. بدین ترتیب  از روش عمومی عدم قطعیت تشابهات (GLUE) برای واسنجی مدل­ها (پارامترهای هیدرولیکی خاک و جذب آب ریشه) استفاده شده است. نتایج تحلیل حساسیت مدل­های مختلف نشان داد جذب آب ریشه به شرایط هیدرولیکی خاک حساس‌تر از خصوصیات ریشه می­باشند. نتایج نشان داد از بین پارامترهای هیدرولیکی خاک، جذب آب ریشه نسبت به ضرایب شکل  و درصد رطوبت اشباع () حساسیت بیشتری نشان می­دهد. از بین خصوصیات ریشه، حساس‌ترین پارامتر تراکم طولی ریشه می­باشد. همچنین نتایج نشان داد مدل ون­گنوختن در ترکیب با روش GLUE به خوبی توانسته است جذب آب ریشه را شبیه­سازی کند، به طوری که آماره­های ضریب تبیین (R2)، ضریب کارایی نش- ساتکلیف (N.S)، میانگین مجذور مربعات خطای نرمال شده (NRMSE)، میانگین مطلق خطا (MAE)، کارایی مدل­سازی (ME)  و شاخص توافق (d) به ترتیب 79/0، 69/0، 12/14، 75/0، 69/0، 86/0 به دست آمد. تلفیق مدل­های جذب آب ریشه به عنوان زیر مدل در مدل­های اگروهیدرولوژیک، ابزاری مفید برای پیش­بینی تعرق گیاه، عملکرد محصول و همچنین مدیریت آب در مزرعه می­باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Sensitivity Analysis and Evaluation of Physical and Experimental Models of Root Water Uptake in Tomato

نویسندگان [English]

  • hadi dehghan 1
  • Amin Alizadeh 2
  • kazem esmaili 3
  • Mohamad Naderianfar 4
1 Water Engineering Department, Kashmar Higher Education Institute, Kashmar, Iran
2 Professor, Water Science and Engineering Department, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
3 Associate Professor, Water Science and Engineering Department, Faculty of Agriculture, Ferdowsi University of Mashhad
4 Assistant Professor, Water Science and Engineering Department, Faculty of Agriculture, Jiroft University
چکیده [English]

Root water uptake is considered as a major factor for  predicting plant transpiration and the product yield. In general, the water root uptake models are divided into two macro- (experimental) and micro- (physical) groups. The physical models require more hydraulic parameters, while empirical models are simpler and require less input data. The aim of this study was to compare the performance of two empirical models and a physical model to predict the root water uptake of tomato under greenhouse conditions. Hence, the generalized likelihood uncertainty estimation (GLUE) was used to calibrate the models (hydraulic parameters of soil and root water uptake). The results of the sensitivity analysis of different models showed that the root water uptake is more sensitive to soil hydraulic conditions than the root characteristics. The results indicated that among the soil hydraulic parameters, the root water uptake shows more susceptibility to the coefficients of shape (λ) and the saturation moisture content (Өs). Among the root characteristics, the most sensitive parameter is the longitudinal density of the root. The results also revealed that the Van Genuchten model combined with the GLUE method has well simulated the root water uptake, as the parameters of R2, NS, NRMSE, MAE, ME, and d were 0.79, 0.69, 14.12, 0.75, 0.69, 0.86, respectively.  The integration of root water uptake models as a sub-model in the agro-hydrological models appears to be a useful tool for predicting the plant transpiration, the product yield as well as water management in the field.

کلیدواژه‌ها [English]

  • Soil Hydrological Parameters
  • Root Characteristics
  • Tomato
Alizadeh, A. (2005). Soil, Water, Plant Relationship. (5th ed.). Imam Reza University Press. (In Farsi).
Alizadeh, H. A., Liaghat,  A. M.  and Noorimohamadeh, M.   (2009).   Evaluating   water   uptake   reduction functions    under    salinity    and    water    stress conditions. Journal of Water and Soil. 23 (3), 88-97. (In Farsi).
Ardalani, H., Babazadeh, H. and Ebrahimi, H. (2016). Evaluation of tomato (Solanum lycopersicum) water uptake reduction function under simultaneous salinity and water stresses. Journal of Water and Irrigation Management. 6 (1), 149- 161. (In Farsi).
Beven, K. and Binley, A. (1992). The future of distributed models: Model calibration and uncertainty prediction. Hydrological Processes, 6(3):279-298.
Brooks, R.H. and Corey, A.T. (1964). Hydraulic properties of porous media. In: Hydrology. Colo. State University, Fort Collins, 27 p.
Cai, G., Vanderborght, J., Couvreur, V., Mboh, C. M. and Vereecken, H. (2017). Parameterization of root water uptake models considering dynamic root distributions and water uptake compensation. Vadose Zone Journal.
De Jong Van Lier, Q., Van Dam, J. C., Metselaar, K., De Jong, R. and Duijnisveld, W. H. M. (2008). Macroscopic root water uptake distribution using a matric flux potential approach. Vadose Zone Journal, 7(3), 1065-1078.
De Jong Van Lier, Q., Van Dam, J. C., Durigon, A., Dos Santos, M. A. and Metselaar, K. (2013). Modeling water potentials and flows in the soil–plant system comparing hydraulic resistances and transpiration reduction functions. Vadose Zone Journal, 12(3). 
De Willigen, P. and Van Noordwijk, M. (1987). Roots, plant production, and nutrition use efficiency. Ph.D. diss. Agricultural Univ., Wageningen, the Netherlands.
Durigon, A., Alex dos Santos, M., de Jong van Lier, Q. and Metselaar, K. (2012). Pressure heads and simulated water uptake patterns for a severely stressed bean crop. Vadose Zone Journal, 11(3).
Faria, L. N., Da Rocha, M. G., Van Lier, Q. D. J. and Casaroli, D. (2010). A split-pot experiment with sorghum to test a root water uptake partitioning model. Plant and soil, 331(1-2), 299-311.
Feddes, R., Kowalik, P. and Zaradny, H. (1978).  Simulation of field water use and crop yield. Simulation Monographs. Pudoc, Wageningen, The Netherlands.
Gardner, W. R.  (1960). Dynamic aspects of water availability to plants. Soil Sci, 89:63–73.
Homaee, M., Feddes, R. A. and Dirksen, C. (2002). A macroscopic water extraction model for nonuniform transient salinity and water stress. Soil Science Society of America Journal, 66(6), 1764-1772.
Homaee, M., Feddes, R. A. and Dirksen, C. (2002b). Simulation of root water uptake. II. Non-uniform transient water stress using different reduction functions. Agricultural Water Management, 57 (2), 111-126.
Hupet, F., Lambot, S., Feddes, R. A., Van Dam, J. C. and Vanclooster, M. (2003). Estimation of root water uptake parameters by inverse modeling with soil water content data. Water Resources Research, 39(11).
Jarvis, N. (2010). Comment on “Macroscopic root water uptake distribution using a matric flux potential approach”. Vadose Zone Journal, 9(2), 499-502.
Ji, J., Cai, H., He, J. and Wang, H. (2014). Performance evaluation of CERES-Wheat model in Guanzhong Plain of Northwest China. Agricultural Water Management, 144, 1-10.
Li, K. Y., De Jong, R., Coe, M. T. and Ramankutty, N. (2006). Root-water-uptake based upon a new water stress reduction and an asymptotic root distribution function. Earth Interactions, 10(14), 1-22.
Materechera, S. A., Alston, A. M., Kirby, J. M., and Dexter, A. R. (1992). Influence of root diameter on the penetration of seminal roots into a compacted subsoil. Plant and soil, 144 (2), 297-303.
Passioura, J. B. (1988). Water transport in and to roots. Annual Review of Plant Physiology and Plant Molecular Biology, 39(1), 245-265.
Raats, P. A. C. (2007). Uptake of water from soils by plant roots. Transport in porous media, 68(1), 5-28.
Rawls, W.J., Brakensiek, D.L. and Saxton, K.E. (1982). Estimation of soil water properties. Trans. ASAE 25, 1316–1320.
Richards, L.A. (1931). Capillary conduction of liquids in porous mediums. Physics. 1: 318-333.
Sadeghi, M., Ghahraman, B., Davary, K., Hasheminia, S. M. and Reichardt, K. (2011). Scaling to generalize a single solution of Richards' equation for soil water redistribution. Scientia Agricola, 68(5), 582-591.
Santos, M. A. D., Van Lier, J., Dam, J. C. V. and Freire Bezerra, A. H. (2017). Benchmarking test of empirical root water uptake models. Hydrology and Earth System Sciences, 21(1), 473-493.
Schaap, M. G., Leij, F. J., and Van Genuchten, M. T. (2001). Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of hydrology. 251(3-4), 163-176.
Scharnagl, B., Vrugt, J., Vereecken, H. and Herbst, M. (2011). Inverse modelling of in situ soil water dynamics: investigating the effect of different prior distributions of the soil hydraulic parameters. Hydrology and Earth System Sciences, 15: 3043–3059.
Shafiei, M., Ghahraman, B., Saghafian, B., Davary, K. and Vazifedust, M. (2014). Calibration and Uncertainty Analysis of SWAP Model by using GLUE Method. Water Research in Agriculture Journal. 28 (2), 477- 488. (In Farsi).
Skaggs, T.H., Shouse, P.J. and Poss, J.A. (2006). Irrigation of forage crops with saline drainage waters: 2. Modeling root uptake and drainage. Vadose Zone Journal. 5:824–837.
Taylor, S.A. and Ashcroft,  G.M. (1972).  Physical Edaphology.  Freeman and  Co.,  San Francisco, CA, pp. 434–435.
Van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils 1. Soil science society of America journal. 44(5), 892-898.
 Van Genuchten, M. Th. (1987). A numerical model for water and solute movement in and below the root zone. U. S. Salinity Laboratory. USDA, ARS, Riverside, CA.