Abdollahi, B., Hosseini moghari, M., & Ebrahimi, K. (2017). Evaluation of CMORPH and TRMM 3B42RT V7 satellite data in order to estimate rainfall in the Gorganroud Basin. Iran Watershed Engineering and Scinces, 36, 55–68. (In Farsi)
Adjei, K. A., Ren, L., & Appiah-adjei, E. K. (2012). Validation of TRMM Data in the Black Volta Basin of Ghana, (May), 647–654. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000487.
Ashouri, H., Hsu, K. L., Sorooshian, S., Braithwaite, D. K., Knapp, K. R., Cecil, L. D., et al. (2015). FARSI-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bulletin of the American Meteorological Society, 96(1), 69–83. https://doi.org/10.1175/BAMS-D-13-00068.1
Bitew, M. M., & Gebremichael, M. (2011). Assessment of satellite rainfall products for streamflow simulation in medium watersheds of the Ethiopian highlands. Hydrology and Earth System Sciences, 15(4), 1147–1155. https://doi.org/10.5194/hess-15-1147-2011
Dezfuli, D., Hosseini moghari, M., & Ebrahimi, K. (2016). Comparison of TRMM-3B42 V7 and FARSI satellite data with observations of ground stations (Case study: Gorganroud Basin). Journal of Soil and Water Sciences, 76, 85–98. (In Farsi)
Duan, Z., Liu, J., Tuo, Y., Chiogna, G., & Disse, M. (2016). Evaluation of eight high spatial resolution gridded precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales. Science of the Total Environment, 573, 1536–1553. https://doi.org/10.1016/j.scitotenv.2016.08.213
Eghtedari, M., Iran Nejad, P., Vazife doost, M., Bazrafshan, J., & Ghahraman, N. (2018). Comparison of spring rainfall from four products networked and simulated by RegCM and their evaluation with observations in Qazvin Plain. Iran-Water Resources Research, 14(4), 32–44. Retrieved from http://www.iwrr.ir/article_61893.html (In Farsi)
Einfalt, T., Arnbjerg-Nielsen, K., Golz, C., Jensen, N.-E., Quirmbach, M., Vaes, G., & Vieux, B. (2004). Towards a roadmap for use of radar rainfall data in urban drainage. Journal of Hydrology, 299(3–4), 186–202. https://doi.org/10.1016/j.jhydrol.2004.08.004
Fujihara, Y., Yamamoto, Y., Tsujimoto, Y., & Sakagami, J.-I. (2014). Discharge Simulation in a Data-Scarce Basin Using Reanalysis and Global Precipitation Data : A Case Study of the White Volta Basin. Journal of Water Resource and Protection, 06(6), 1316–1325. https://doi.org/10.4236/jwarp.2014.614121
Gao, F., Zhang, Y., Chen, Q., Wang, P., Yang, H., Yao, Y., & Cai, W. (2018). Comparison of two long-term and high-resolution satellite precipitation datasets in Xinjiang, China. Atmospheric Research, 212, 150–157. https://doi.org/10.1016/j.atmosres.2018.05.016
Hong, Y., Hsu, K.-L., Sorooshian, S., & Gao, X. (2004). Precipitation Estimation from Remotely Sensed Imagery Using an Artificial Neural Network Cloud Classification System. Journal of Applied Meteorology, 43(12), 1834–1853. https://doi.org/10.1175/JAM2173.1
Javanmard, S., Yatagai, A., Nodzu, M. I., Bodaghjamali, J., & Kawamoto, H. (2010). Comparing high-resolution gridded precipitation data with satellite rainfall estimates of TRMM-3B42 over Iran. Advances in Geosciences, 25, 119–125. https://doi.org/10.5194/adgeo-25-119-2010
Jia, S., Zhu, W., Lu, A., & Yan, T. (2011). A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam Basin of China. Remote Sensing of Environment, 115(12), 3069–3079. https://doi.org/10.1016/j.rse.2011.06.009
Katiraie-Boroujerdy, P. S., Akbari Asanjan, A., Hsu, K. lin, & Sorooshian, S. (2017). Intercomparison of FARSI-CDR and TRMM-3B42V7 precipitation estimates at monthly and daily time scales. Atmospheric Research. https://doi.org/10.1016/j.atmosres.2017.04.005
Lashkari, A., Banayan, M., Koochaki, A., & Alizade, A. (2016). Investigation of the feasibility of using the AgMERRA database for the production of incomplete and missing data in synoptic station data (Case study: Mashhad Plain). Water and Soil Journal, 1749–1758. (In Farsi)
Li, M., & Shao, Q. (2010). An improved statistical approach to merge satellite rainfall estimates and raingauge data. Journal of Hydrology, 385(1–4), 51–64. https://doi.org/10.1016/j.jhydrol.2010.01.023
Maggioni, V., Meyers, P. C., & Robinson, M. D. (2016). A Review of Merged High-Resolution Satellite Precipitation Product Accuracy during the Tropical Rainfall Measuring Mission (TRMM) Era. Journal of Hydrometeorology, 17(4), 1101–1117. https://doi.org/10.1175/JHM-D-15-0190.1
Mahrooghy, M., Anantharaj, V. G., Younan, N. H., Aanstoos, J., & Hsu, K.-L. (2012). On an Enhanced FARSI-CCS Algorithm for Precipitation Estimation. Journal of Atmospheric and Oceanic Technology, 29(7), 922–932. https://doi.org/10.1175/JTECH-D-11-00146.1
Sharifi, E., Steinacker, R., & Saghafian, B. (2016). Assessment of GPM-IMERG and other precipitation products against gauge data under different topographic and climatic conditions in Iran: Preliminary results. Remote Sensing, 8(2), 135. https://doi.org/10.3390/rs8020135
Tan, M. L., & Duan, Z. (2017). Assessment of GPM and TRMM precipitation products over Singapore. Remote Sensing, 9(7), 720. https://doi.org/10.3390/rs9070720
Tan, M. L., & Santo, H. (2018). Comparison of GPM IMERG, TMPA 3B42 and FARSI-CDR satellite precipitation products over Malaysia. Atmospheric Research, 202, 63–76. https://doi.org/10.1016/j.atmosres.2017.11.006
Tan, M. L., Ibrahim, A. L., Duan, Z., Cracknell, A. P., & Chaplot, V. (2015). Evaluation of six high-resolution satellite and ground-based precipitation products over Malaysia. Remote Sensing, 7(2), 1504–1528. https://doi.org/10.3390/rs70201504
Tao, H., Fischer, T., Zeng, Y., & Fraedrich, K. (2016). Evaluation of TRMM 3B43 precipitation data for drought monitoring in Jiangsu Province, China. Water (Switzerland), 8(6), 221. https://doi.org/10.3390/w8060221
Thiemig, V., Rojas, R., Zambrano-Bigiarini, M., & De Roo, A. (2013). Hydrological evaluation of satellite-based rainfall estimates over the Volta and Baro-Akobo Basin. Journal of Hydrology, 499, 324–338. https://doi.org/10.1016/j.jhydrol.2013.07.012
Xie, P., & Xiong, A. Y. (2011). A conceptual model for constructing high-resolution gauge-satellite merged precipitation analyses. Journal of Geophysical Research Atmospheres, 116(21). https://doi.org/10.1029/2011JD016118
Xu, R., Tian, F., Yang, L., Hu, H., Lu, H., & Hou, A. (2017). Ground validation of GPM IMERG and trmm 3B42V7 rainfall products over Southern Tibetan plateau based on a high-density rain gauge network. Journal of Geophysical Research, 122(2), 910–924. https://doi.org/10.1002/2016JD025418
Yuan, F., Zhang, L., Wah Win, K. W., Ren, L., Zhao, C., Zhu, Y., et al. (2017). Assessment of GPM and TRMM multi-satellite precipitation products in streamflow simulations in a data sparse mountainous watershed in Myanmar. Remote Sensing, 9(3), 302. https://doi.org/10.3390/rs9030302
Zhong, R., Chen, X., Lai, C., Wang, Z., Lian, Y., Yu, H., & Wu, X. (2018). Drought monitoring utility of satellite-based precipitation products across mainland China. Journal of Hydrology. https://doi.org/10.1016/J.JHYDROL.2018.10.072