برنامه‌ریزی آبیاری ماش سیاه براساس شاخص تنش آبی گیاه (CWSI) تحت روش آبیاری قطره‌ای

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کاندیدای دکتری آبیاری و زهکشی، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

2 دانشیار، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

3 استادیار، گروه علوم خاک، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

4 دانشیار، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران

5 استادیار، گروه زراعت، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

6 استادیار، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

چکیده

روش­های تجربی و نظری (بیلان انرژی) به­طور گسترده برای محاسبه شاخص تنش آبی گیاه (CWSI) و برنامه‌ریزی آبیاری مورد استفاده قرار می­گیرند تا وضعیت آب گیاه را توصیف کنند. برنامه‌ریزی آبیاری در تحقیق حاضر با استفاده از دستگاه مادون قرمز دستی و روش تجربی Idso et al. (1981) در مزرعه تحقیقاتی دانشکده کشاورزی دانشگاه ارومیه برای ماش سیاه تحت رژیم‌های مختلف آبیاری با روش قطره‌ای در سال 1396 صورت گرفت. طرح آزمایشی در قالب طرح بلوک‌های کامل تصادفی با سه سطح آبیاری I1، I2 و I3 به ترتیب 50، 75 و 100 درصد نیاز آبی در سه تکرار اجرا گردید. با استفاده از معادلات خطوط مبنای به­دست آمده برای هر تیمار، مقادیر میانگین CWSI در طول فصل رشد ماش سیاه برای تیمارهای I1، I2 و I3 به ترتیب 37/0، 23/0 و 15/0 محاسبه گردید. رابطه بین CWSI و عمق کل آبیاری (میلی­متر) به صورت CWSI = -0.0008(I) + 0.58 و رابطه بین عملکرد دانه (تن بر هکتار) ماش سیاه و CWSI نیز به صورت Yield = -1.8237(CWSI) + 2.1435 تعیین گردید که مقادیر ضریب تبیین (R2) روابط به ترتیب 98/0 و 99/0 به­دست آمد که دقت بالای مدل­های رگرسیونی را نشان می­دهد. به طور کلی، اگر مقدار آب با اعمال تنش در طول دوره رشد گیاه کاهش پیدا کند، مقدار CWSI افزایش می­یابد و در نتیجه با افزایش CWSI، مقدار عملکرد دانه محصول کاهش می­یابد. در نهایت تیمار بدون تنش (I3) با 15/0CWSI= اساس برنامه‌ریزی آبیاری قرار گرفت و سپس روابطی برای تعیین زمان آبیاری با استفاده از CWSI در اقلیم ارومیه برای چهار مرحله از رشد ماش سیاه شامل آغاز گلدهی-گلدهی، تشکیل نیام، پرشدن نیام و دانه و رسیدگی فیزیولوژیکی به ترتیب (AVPD)1579/0-9498/1=C(Ta-Tc)، (AVPD)1585/0-4395/4=C(Ta-Tc)، (AVPD)0578/0-4676/2=C(Ta-Tc) و (AVPD)1462/0-7532/5=C(Ta-Tc) ارائه گردید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Irrigation scheduling of Black Gram based on Crop Water Stress Index (CWSI) under drip irrigation

نویسندگان [English]

  • afshin khorsand 1
  • Vahid Rezaverdinejad 2
  • Hossein Asgarzadeh 3
  • Abolfazl Majnooni Heris 4
  • amir rahimi 5
  • Sina Besharat 6
1 Ph. D Candidate of Irrigation and Drainage, Department of Water Engineering, Urmia University, Urmia, Iran
2 Associate Professor, Department of Water Engineering, Urmia University, Urmia, Iran
3 Assistant Professor, Department of Soil Science, Urmia University, Urmia, Iran
4 Associate Professor, Department of Water Engineering, University of Tabriz, Tabriz, Iran
5 Assistant Professor, Department of Agriculture, Urmia University, Urmia, Iran
6 Assistant Professor, Department of Water Engineering, Urmia University, Urmia, Iran
چکیده [English]

Empirical and theoretical methods (energy balance) are widely used to calculate the Crop Water Stress Index (CWSI) and irrigation scheduling to describe crop water status. In this study, irrigation scheduling was performed at the research farm of College of Agriculture, Urmia University, using a manual infrared thermometer and the empirical method of Idso et al. (1981) for the black gram under different irrigation regimes using drip irrigation in 2017. The experimental design was carried out in a randomized complete block design with three levels of irrigation I1, I2 and I3 which were 50, 75 and 100 percent water requirement in three replications, respectively. Using the baselines obtained for each treatment, the average CWSI values during the growth season of black gram for I1, I2 and I3 treatments were calculated to be 0.37, 0.23 and 0.15 respectively. The relationship between CWSI and total irrigation depth (mm) was determined as CWSI = -0.0008 (I) + 0.58, and the relationship between black gram grain yield (ton/hec) and CWSI was determined as Yield = -1.8237 (CWSI) + 2.1435 which their correlation coefficients (R2) were 0.98 and 0.99 respectively, which shows the high accuracy of regression models. In general, if the amount of water decreases with stress during the plant growth, the CWSI value increases, and as a result of increasing CWSI, the crop grain yield decreases. Finally, the no stress treatment (I3) with CWSI=0.15 was the basis for irrigation scheduling and then some relationships were established for determining the irrigation time using CWSI in Urmia climate for four stages of black gram growth; flowral induction-flowering, pod formation, seed and pod filling, and physiological maturity as
(Tc  ̶ Ta)C = 1.9498  ̶ 0.1579(AVPD), (Tc  ̶ Ta)C = 4.4395 ̶ 0.1585(AVPD), (Tc  ̶ Ta)C = 2.4676  ̶ 0.0578(AVPD) and (Tc  ̶ Ta)C = 5.7532  ̶  0.1462(AVPD), respectively.

کلیدواژه‌ها [English]

  • Air vapor pressure deficit
  • Canopy temperature
  • Grain yield
  • Urmia
  • water stress
Ahi, Y., Orta, H., Gündüz, A. and Gültaş, H. T. (2015). The canopy temperature response to vapor pressure deficit of grapevine cv. Semillon and Razaki. Agriculture and Agricultural Science Procedia, 4, 399-407.

Ahmadi, H., Nasrolahi, A. H., Sharifipour, M. and Eisavand, H. R. (2017). Soybean irrigation scheduling using the temperature difference between the air and canopy cover. Journal of Water and Irrigation Management, 7(1), 121-133. (In Farsi)

Alizadeh, A. (2006). Designing Irrigation Systems. Imam Reza University Press: Mashhad. (In Farsi)

Banayan, M. and Kochaki, A. (2009). Agriculture Grain. Jahad University Press: Ferdowsi University of Mashhad. (In Farsi)

Candogan, B. K., Shncik, M., Buyukcangaz, H. and Demirtas, C. (2013). Yield, quality and crop water stress index relationships for deficit-irrigated soybean [Glycine max (L.) Merr.] in sub-humid climatic conditions. Journal of Agricultural Water Management, 118, 113– 121.

Chen, J., Lin, L. and Lü, G. (2010). An index of soil drought intensity and degree: An application on corn and a comparison with CWSI. Journal of Agricultural Water Management, 97(6), 865-871.

Colak, Y. B., Yazar, A., Çolak, İ., Akça, H. and Duraktekin, G. (2015). Evaluation of crop water stress index (CWSI) for eggplant under varying irrigation regimes using surface and subsurface drip systems. Agriculture and Agricultural Science Procedia, 4, 372-382.

DeJonge, K. C., Taghvaeian, S., Trout, T. J. and Comas, L. H. (2015). Comparison of canopy temperature-based water stress indices for maize. Journal of Agricultural Water Management, 156, 51-62.

Erdem, Y., Erdem, T., Orta, A. H. and Okursoy, H. (2005). Irrigation scheduling for watermelon with crop water stress index (CWSI). Journal of Central European Agriculture, 6(4), 449-460.

Farshi, A. A., Shariati, M. R., Jarallahi, R., Gaemi, M. R., Shahabifar, M. and Tavalaii, M. M. (1997). Estimated Water Requirements for Major Agronomic and Horticultural Plants of the Country. Ministry of Agriculture (TAT): Soil and Water Research Institute. (In Farsi)

Feiziasl, V., Fotovat, A., Astaraei, A., Lakzian, A. and Mousavi Shalmani, M. A. (2014). Determination of soil and plant water balance and its critical stages for rainfed wheat using crop water stress index (CWSI). Journal of Water and Soil, 28(4), 804-817. (In Farsi)

Fernández, J. E. and Cuevas, M. V. (2010). Irrigation scheduling from stem diameter variations: A review. Agricultural and Forest Meteorology, 150(2), 135-151.

Gardner, B. R. and Shock, C. C. (1989). Interpreting the Crop Water Stress Index. American Society of Association Executives, 89, 26-42.

Geiser, K. M., Slack, D. C., Allred, E. R. and Stange, K. W. (1982). Irrigation scheduling using crop canopy-air temperature difference. Transactions of the ASAE. American Society of Agricultural Engineers, 25(3), 689-0694.

Ghorbani, M., Bromand Nasab, S. and Soltani Mohammadi, A. (2015). Effect of water salinity in sprinkler irrigation on the CWSI index for irrigation scheduling of summer maize. Journal of Irrigation Sciences and Engineering, 39(3), 63-71. (In Farsi)

Idso, S. B., Jackson, R. D., Pinter Jr, P. J., Reginato, R. J. and Hatfield, J. L. (1981). Normalizing the stress-degree-day parameter for environmental variability. Journal of Agricultural Meteorology, 24, 45-55.

Irmak, S., Haman, D. Z. and Bastug, R. (2000). Determination of crop water stress index for irrigation timing and yield estimation of corn. Agronomy Journal, 92(6), 1221-1227.

Jackson, R. D., Idso, S. B., Reginato, R. J. and Pinter PJ, Jr. (1981). Canopy temperature as a crop water stress indicator. Water Resources Research, 17(4), 1133-1138.

Kirkham, M. B. (2005). Principles of Soil and Plant Water Relations. Elsevier Academic Press, Amsterdam.

Keller, J. and Bliesner, R. D. (1990). Sprinkle and Trickle Irrigation. Van Nostr and Reinhold, New York.

Maes, W. H. and Steppe, K. (2012). Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: A review. Journal of Experimental Botany, 63, 4671-4712.

Raes, D. (2009). The ETo Calculator Version 3.1, Reference Manual. FAO, Rome, Italy, 38 p.

Saeedinia, M., Broomand Nasab, S., Hooshmand, A., Soltani Mohammadi, A. and Andarzian, B. (2015). Applicability of CWSI index for irrigation scheduling of maize using saline water in Ahvaz. Journal of Water and Soil Science, 26(1), 173-185. (In Farsi)

Sepaskhah, A. R. and Kashefipour, S. M. (1994). Relationships between leaf water potential, CWSI, yield and fruit quality of sweet lime under drip irrigation. Journal of Agricultural Water Management, 25(1), 13-21.

Sepaskhah, A. R. and Ilampour, S. (1996). Relationships between yield, crop water stress index (CWSI) and transpiration of cowpea (Vigna sinensis L). Agronomie, 16(5), 269-279.

Seyfi, A., Mirlatifi, M., Dehghani Sanij, H. and Torabi, M. (2017). Determination of water stress index for pistachio trees under subsurface drip irrigation method using temperature difference between the air and canopy cover. Journal of Water and Irrigation Management, 4(1), 123-136. (In Farsi)

Sezen, S. M., Yazar, A., Daşgan, Y., Yucel, S., Akyıldız, A., Tekin, S. and Akhoundnejad, Y. (2014). Evaluation of crop water stress index (CWSI) for red pepper with drip and furrow irrigation under varying irrigation regimes. Journal of Agricultural Water Management, 143, 59-70.

Shahrokhnia, M. A., Zare, E. and Dehghani Sanij, H. (2015). Comparison of different drip irrigation scheduling tools for citrus trees in fine and medium texture soils. Iranian Journal of Irrigation and Drainage, 3(9), 448-458. (In Farsi)

Taghvaeian, S., Chávez, J. L. and Hansen, N. C. (2012). Infrared thermometry to estimate crop water stress index and water use of irrigated maize in Northeastern Colorado. Remote Sensing, 4(11), 3619-3637.

Taghvaeian, S., Chávez, J. L., Bausch, W. C., DeJonge, K. C. and Trout, T. J. (2013). Minimizing instrumentation requirement for estimating crop water stress index and transpiration of maize. Irrigation Science, 32(1), 53-65.

Taheri Ghanad, S. (2008). Irrigation scheduling of fields using a direct method. In: Proceedings of 2nd Seminar on Improvement solutions correction of surface irrigation systems, 22 May., Iranian Irrigation and Drainage Committee, Tehran, Iran, pp. 43-59. (In Farsi)

Tanner, C. B. (1963). Plant Temperatures. Agronomy Journal, 55(2), 210-211.

Urbano, C. C. (1989). The environmental debate: An industry issue. American nurseryman (USA).

Verdinejad, V. R., Besharat, S., Abghari, H. and Ahmadi, H. (2012). Estimation of maximum allowable deficit in different growth stages of fodder maize using canopy-air temperature difference. Journal of Water and Soil, 25(6), 1344-1352. (In Farsi)