تعیین فواصل زهکش‌های زیرزمینی با استفاده از داده‌های مزرعه‌ای در اراضی شالیزاری استان گیلان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته دکتری/ دانشگاه زابل

2 رئیس دانشکده آب و خاک زابل

3 استادیار پژوهش/ موسسه تحقیقات برنج کشور

4 دانشگاه تهران

5 عضو هیات علمی/ دانشگاه زابل

چکیده

زهکش­های زیرزمینی در اراضی شالیزاری به­منظور زهکشی میان فصل، خشک‌کردن زمین در زمان برداشت برنج و پایین آوردن سطح ایستابی پس از برداشت برنج (جهت کشت پاییزه و زمستانه) احداث می­گردد. با توجه به اینکه اراضی شالیزاری استان گیلان (به دلیل بافت خاک سنگین، نفوذپذیری کم، بارندگی شدید و وجود لایه نفوذناپذیر کم­عمق) از شرایط منحصر به­ فردی نسبت به اراضی غیر ­شالیزاری برخوردار می­باشند، مطالعه و معرفی معادله­ای که بیشترین سازگاری را با این شرایط دارد ضرورت دارد. لذا در این پژوهش کارایی معادلات ماندگار و غیر­ ماندگار زهکشی برای تعیین فواصل زهکش­های زیرزمینی در اراضی شالیزاری به­منظور کشت دوم پس از برداشت برنج (کشت پاییزه و زمستانه) مطالعه گردید. تیمارهای مورد مطالعه شامل شش سیستم زهکشی زیرزمینی معمولی متشکل از L7.5D0.8، L10D0.8، L15D0.8، L7.5D1، L10D1، L15D1 بودند. در این مطالعه از هفت رابطه ماندگار زهکشی شامل معادلات هوخهات، کرکهام، داغان، اگینو موراشیما، دلاکرویکس، هوخهات- ارنست و ارنست و سه رابطه غیر­ ماندگار شامل معادلات گلور- دام، معادله ترکیبی باور- وان­شیلفگارد با معادله هوخهات و دوزو و هلینگا استفاده گردید. از بین بارندگی­های رخ داده در طول آزمایش، باران سه­روزه با مقدار 9/23 میلی­متر به دلیل نزدیکی به باران طرح برای تصمیم­گیری در مورد بهترین معادله انتخاب گردید. معادله­ای که فاصله زهکش­ها را در بارندگی مذکور با کمترین انحراف نسبت به بهترین تیمار زهکشی (L10D0.8) برآورد نمود به­عنوان بهترین معادله زهکشی انتخاب شد. بر اساس نتایج بدست آمده در این پژوهش، معادله هوخهات-ارنست از بین معادلات ماندگار و معادله ترکیبی باور- وان­شیلفگارد با معادله هوخهات از بین معادلات غیر­ ماندگار فاصله زهکش­ها را با کمترین انحراف نسبت به بهترین تیمار زهکشی برآورد نمود که به­عنوان بهترین معادلات و معادله دلاکرویکس به­عنوان ضعیف­ترین معادله در طراحی زهکش­های زیرزمینی برای اراضی شالیزاری به­منظور فراهم کردن شرایط مناسب در کشت دوم معرفی گردید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determination of subsurface drainage spacing using field data in paddy fields of Guilan Province

نویسندگان [English]

  • Maryam Alizadeh 1
  • Peyman Afrasiab 2
  • Mohammad Reza Yazdani 3
  • Abdolmajid Liaghat 4
  • Masoomeh Delbari 5
1 PhD/ university of zabol
2 head of the Faculty of Soil and Water Zabol
3 Assistant Professor/Rice Research Institute of Iran
4 University of tehran
5 Scientific staff/ University of Zabol
چکیده [English]

Subsurface drainage is constructed in the paddy fields with the purpose of drying of land at the time of rice harvest, mid-season drainage and lowering water level after the rice harvest. Most drainage equations have been developed for non-paddy land. However, given the unique special conditions of paddy fields in Guilan province (due to heavy textured soils with low permeability, heavy rain and shallow impermeable layer) compared to non-paddy lands, therefore introduced the equation that is most compatible with these conditions. So in this study, steady and unsteady equations were evaluated in estimating space of subsurface drainage for a second crop after rice harvest. Drainage treatments included: six conventional subsurface drainage systems including drainage system with drain depth of 0.8m and drain spacing of 7.5m (L7.5D0.8), drain depth of 0.8m and drain spacing of 10m (L10D0.8), and drain depth of 0.8m and drain spacing of 15m (L15D0.8), drain depth of 1m and drain spacing of 7.5m (L7.5D1), drain depth of 1m and drain spacing of 10m (L10D1), and drain depth of 1m and drain spacing of 15m (L15D1). From the rainfall occurred during the experiment, a three-day rainfall with a mean value of 23.9mm was selected for decision on the best equation. The equation that estimated the drainage space in the above rainfall with the least deviation from the best drainage treatment was chosen as the best drainage equation. The results showed that Ernst- Hooghoudt equation and Bouwer and Van Schilfgaarde equation combined with Hooghoudt equation estimated drainage space with the least deviations from the best drainage treatment (L10D0.8) and were selected as the best equations in the second cultivation season and the Delroix equation was introduced as the weakest equation in the design of subsurface drainage for paddy field in order to provide suitable conditions for the second cultivation.

کلیدواژه‌ها [English]

  • Subsurface Drainage
  • Drain Spacing
  • Second Crop
  • Steady Equation
Alizadeh, A. (2003). Land drainage, design and planning of drainage systems in agriculture 5thAstanGhodsRazavi pub., 448 pp. (In Farsi).
Alizadeh, M. (2016). Comparison of the drainage equations for determining of subsurface drainage spaces in the paddy fields (case study: fields of rice research institute of Iran). Ph.D. Thesis University of Zabol. 163p. (In Farsi).
Alizadeh, M., Afrasiab, P., Yazdani, M.R., Liaghat, A and M, Delbari. (2016a). Evaluation the effect of space and depth subsurface drainage in the paddy field in order to develop second crop in a sample farm of Guilan. Journal of Water Research in Agriculture, 30 (2), 159- 172. (In Farsi).
Alizadeh, M., Afrasiab, P., Yazdani, M.R., Liaghat, A and M, Delbari. (2016b). The effect of depth and space subsurface drainage on paddy field drainage intensity (Case study: Fields of Rice Research Institute of Iran). Journal of Water and Soil Conservation, 23(4), 219-233. (In Farsi).
Bybordi M. (1999). Principle of drainage engineering and land reclamation.8th ed. University of Tehran pub. (In Farsi).
Darzi, A., Mirlatifi, S. M and A, Asgari. (2014). Comparison of steady and unsteady state drainage equations for determination of subsurface drain spacing in paddy fields: a case study in Northern Iran. Paddy and Water Environment. 12, 103-111.
Dehghanian, A. Haghayeghi, A and F. Rasouli. (2010). Determine distance subsurface drainage in the city of Marvdasht, Fars Province. 3nd National Conference on Irrigation and Drainage network management. Shahid Chamran University of Ahvaz. 1-7.(In Farsi).
Djurović. N and R. Stričević. (2003a). Application of Kraijenhoff Van De Leur-Maasland's method in drainage. Journal of Agricultural Sciences, 48 (2), 159-170.
Djurović. N and R. Stričević. (2003b). Some properties of Dagan’s method for drain spacing determination in Marshy - Gley soil . Journal of Agricultural Sciences, 48 (1), 69-75.
Djurović. N and R. Stričević. (2003c). Some properties of Kirkham’s method for drain spacing determination in Marshy - Gley soil.  Journal of Agricultural Sciences, 48 (1), 59-67.
Ebrahimian, H and H, Noory. (2014). Modeling Paddy Field Subsurface Drainage Using HYDRUS-2D. Paddy Water Environ. 13: 477-485.
Hălbac-Cotoară-Zamfir, R. (2009). Results obtained in drainage arrangements design by using drainspace application. Research Journal of Agricultural Science, 41 (1). 426-431
Karimi, V. Yosifian, H. Salmani, M. (2007). Evaluation of subsurface drainage system with rice crust in rice lands. 2nd national conference of experience on constraction of water structures and irrigation of drainage networks. 247-251. (In Farsi).
Maged Daoud, H. (2015). Drainage Design Equation for Egyptian Vertisols. International Journal of Current Engineering and Technology. Vol.5, No.4. 2550-2556.
Mirzaei, GH. R and A, Pazira. (1998). Additional soil studies in the land Pashkla- Hajikla to calculate and determine the distance of drainage in the combination of several ships. MSc Thesis. 149p. (In Farsi).
Murashima, K. and Y. Ogino. (1992). Comparative Study on Study on Steady and Non-Steady State Formulae of Subsurface Drain Spacing – Design on Subsurface Drainage in Paddies (I)-. Bulletin of the Universityof Osaka Prefecture, 44, 41-48.
Oosterbaan, R. J. (2002). Drainage research in farmer fields: analysis of data, part of project ‘‘Liquid Gold’’ of the International Institute for Land Reclamation and Improvement (ILRI). Wageningen, the Netherlands.
Pali, A. K., Katre, P and Khalkho, D. (2014). An Unsteady Subsurface Drainage Equation Incorporating Variability of Soil Drainage Properties. Water Resour Manage. 28:2639–2653.
RAJAD., (1995). Analysis of subsurface drainage design criteria. Rajasthan Agriculture Drainage Research Project, Kota, India RAJAD.
Rawat, K., Tripathi, V., Gupta, S and K. Rao. (2001). Effect of drain placement in a low hydraulic conductivity zone in a two layered soil profile on transmissivity of the shallow aquifer. Journal of the Indian Society of Soil Science, 49 (3), 399-406.
Singh, PK., Singh, OP., Jaiswal, CS and H. S Chauhan. (1999). subsurface drainage of a three layered soil with slowly permeable top layer. Agriculture Water Management. 42:97–109.
Štibinger, J., (2009). Approximation of subsurface drainage discharge by De Zeeuw - Hellinga theory and its verification in heavy soils of fluvial landscape of the Cerhovice Brook. Soil & Water Research, 4 (1), 28-38.
MAFF (The Ministry of Agriculture, Forestry and Fisheries), (1979). Bureau of Agricultural Structure Improvement (BASI). Planning and Design Standards of Subsurface Drainage Project. 66p. (in Japanese).
Torabi, M. (1999). Mathematical model of drainage theory in steady and unsteady on finite element method with field conditions. Karaj. Agricultural Engineering Research Institute, Publication No. 143. (In Farsi)
Wu, G and S.T. Chieng. (1991). A convenient drain spacing formula for layered soils. Canadian Agricultural Engineering. 239-243.