بررسی تاثیر زئولیت، بیوچار آفتابگردان و کربن فعال بر تثبیت سرب در خاک هایی با ویژگی های مختلف

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و مهندسی خاک دانشگاه رازی

2 استادیار گروه علوم و مهندسی خاک دانشگاه رازی

چکیده

 با توجه به اثرات فلزات سنگین بر سلامت انسان، حذف آنها از محیط‌زیست ضروری است. در این مطالعه، کارآیی چند جاذب در حذف سرب از محلول خاک ارزیابی شد. آزمایش به صورت فاکتوریل، در قالب طرح کاملاٌ تصادفی با سه تکرار اجرا شد. تیمارهای آزمایشی شامل سه نوع جاذب (زئولیت، بیوچار آفتابگردان و کربن فعال)، چهار سطح غلظت سرب (0، 300، 600 و 900 میلی‌گرم بر لیتر نیترات سرب) و سه نمونه خاک مختلف بود. طبق نتایج، بهترین pH جذب سرب 5 و زمان تعادلی مناسب 24 ساعت بود. همچنین، با افزایش وزن جاذب، میزان حذف فلز سرب از محلول افزایش یافت. همین‌طور در بیشتر حالات، مدل لانگمویر داده‌ها را بهتر از مدل فروندلیچ توصیف کرد. از آنجا که غلظت کل سرب واجذب شده با زئولیت و بیوچار کمتر از کربن فعال بود، این موضوع نشان دهنده کارایی بالاتر این جاذب‌ها نسبت به کربن فعال است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the effect of zeolite, sunflowers biochar and activated carbon on Pb stabilization in soils with different characteristics

نویسندگان [English]

  • Reza Kaihanynejad 1
  • Ali Asshraf Amirinejad 2
1 Razi University
2 Razi University
چکیده [English]

Due to the effects of heavy metals on human health, removing them from the environment is essential. In this study, performance of several adsorbents in the removal of Pb from the soil solution was evaluated. A factorial experiment was conducted in a randomized design with three replications. Treatments included three types of adsorbents (zeolite, sunflower biochar and active carbon), four levels of Pb (0, 300, 600 and 900 mg/L of lead nitrate) and three different soil samples. According to the results, the best pH for absorbance of Pb was 5 and the proper balance time was 24 hours. Also, by increasing the adsorbent weight, the removal of Pb from the solution increased. In most cases Langmuir model described the data better than Freundlich. Since the total concentration of Pb desorption with zeolite and Biochar was less than active carbon, these adsorbents have higher efficiency than active carbon.

کلیدواژه‌ها [English]

  • Biochar
  • Active carbon
  • Zeolite
  • Adsorption
Alloway, B. J. (2013). Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability. Environmental Pollution, Lead Springer. (3rd Ed.). (P. 204).
Appel, C, and Ma, L. (2002). Concentration, pH, and surface charge effects on cadmium and lead sorption in three tropical soils. Journal of environmental quality 31(2): 581-589.
Bradl, H. B. (2004). Heavy metals in the environment: Origin, interaction and remediation, (1st Ed.) Elsevier. p. 282.
Chen S, Zhou Q, Sun L, Sun T, and Chao L. (2007). Speciation of cadmium, lead in soils as affected by metal loading quantity and aging time. Bulletin of Environmental Contamination and Toxicology. 79, 184- 187.
 Crini, G. and Badot, P. M. (2008). Application of chitosan, a natural amino polysaccharide for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Progress in Polymer Science. 33(4): 399-447.
Diagboya. P. Olu-Owolabi. B. and Adebowale, K. (2015). Effects of time, soil organic matter, and iron oxides on the relative retention and redistribution of lead, cadmium, and copper on soils. Environmental Science Pollutant Recourse. 22(13): 10331-10339.
Elkhatib E. A., Elshabingand G. M. and Balba A. M. (1991). Kinetics of lead sorption in calcareous soils. Arid Soil Research and Habitation. 69: 297-310.
Gee, G.W., and Bauder, J.W. (1986). Particle size analysis. In: A. Klute. (1st Ed), Methods of soil analysis, Part 1, Physical and mineralogical methods. American Society of Agronomy, Madison, Wisconsin, USA, pp 383-411.
Gray, C. W, Dunham. S.J, Dennis .P.G, Zhao. F.J, McGrath. S .P. (2006). Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud. Environmental Pollution. 142: 530-539.
Jamali.Armandi, H. and Shamohammadi, Sh. (2014). The effect of concentration on efficiency and equilibrium time lead from aqueous solutions by rice husk adsorbent. Environmental Sciences, 15: 1-11. (In Farsi).
Jiang, T.Y, Jiang, J, Xu, R.K, Li, Z. (2012). Adsorption of Pb (II) on variable charge soils amended with rice-straw derived biochar. Chemosphere 89(3): 249-256.
Kabata-Pendias A. (2001). Trace elements in soils and plants. (3th ed.). CRC Press, Boca Raton.
Khodaverdiloo, H. and Hamzenejad, R. (2011). Sorption and desorption of lead (Pb) and effect of cyclic wetting-drying on metal distribution in two soils with different Properties. Journal Science and knowledge. 21(1): 4-12.
Kumar Naiya, T. Kumar Bhattacharya, A. Mandal. S. and Kumar Das. S. (2009). The sorption of lead (II) ions on rice husk ash. Journal of Hazardous Materials. 163: 1254–1264.
Mohammadi Galehzan, M. and Shamohammadi, S. H. (2012). Comparison of active carbon, sawdust, almond shell and hazelnut shell absorbent in removal of Ni from aqueous environment. Water and sewage. 3: 71-79. (In Farsi)
Mohammadi, M. Fotovat, A. and Haghnia, Gh. H. (2009). Heavy metals removal from industrial wastewater by sand, soil and organic matter. Water and Wastewater. 4: 71-81. (In Farsi)
Namgay T., Singh B. and Pal Singh, B. (2010).  Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize, Australian Journal of Soil Research. 48: 638–647.
Nelson, R .E. (1982). Carbonate and gypsum. In: A.L. Page R.H. Millerand D.R. Keeney (2nd   Ed.). Methods of soil analysis, Part 2, Chemical and microbiological properties (2nd Ed.), American Society of Agronomy, Madison, Wisconsin, (pp. 181-196). USA.
Qin, F. Shan, X. Wei, B.( 2004). Effects of low-molecular-weight organic acids and residence time on desorption of Cu, Cd, and Pb from soils. Chemosphere 57(4): 253-263.
Rajabi, B. KhodaverdiloO, H. Samadi, A. and Rasouli Sadaghiani, M. H. (2011). Sorption and desorption of lead in some calcareous soils of western Azerbaijan province. Journal of Water and Soil. 25(6): 1287-1298. (In Farsi)
Rhoades, J. D. (1982). Soluble salts. In: A. L. Page, R. H. Miller and D.R. Keeney (Eds), Methods of soil analysis Part 2, Chemical and mineralogical properties. Agronomy series. American Society of Agronomy and Soil Science Society of America, Madison, Wisconsin. (2nd Ed.). (9: 167-179). USA.
Saadat, K. and Barani Motlagh, M. (2013). Influence of Iranian natural zeolites on uptake of lead and cadmium in applied sewage sludge by Maize (Zea mays. L). Journal of Water and Soil Conservation. 20(4): 123-143. (In Farsi)
Sharifipur, F. Hojjati, S. Landi, A. Faz-kano, A. (2014). Comparing of sepiolite and zeolite minerals to remove lead from aqueous solutions. 13th Iranian Soil Science Congress. pp. 8-14. (In Farsi)
Sipos, P. (2009). Distribution and sorption of potentially toxic metals in four forest soils from Hungary. European Geoscience. 1(2): 183-192.
Spark, K.M, Johnson, B.B, Wells, J.D. (1995). Characterizing heavy‐metal adsorption on oxides and oxyhydroxides. European Journal of Soil Science 46(4): 621-631.
Tamer A. (2013). Transport and adsorption of heavy metals in different soils. Ph.D. Dissertation, Louisiana State University and Agricultural and Mechanical College.
Vafakhah, S. Bahr- aloloum, M. E. Bazargan- lari, R. and Saeedi-khani, M. (2013).  Studying the adsorption behavior of copper (П) ions from the industrial waste water solutions using corncob particles. Journal of Modern Materials. 4(1): 1-12. (In Farsi)
Walkley, A. and Black, I. A. (1934). An examination of method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science. 37: 29-37.
Wang, K. and Xing, B. (2002). Adsorption and desorption of cadmium by goethite pretreated with phosphate. Chemosphere. 48: 665–670.