شبیه‌سازی رشد ذرت تحت مدیریت‌های مختلف آب و نیتروژن با مدل AquaCrop

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد آبیاری و زهکشی گروه مهندسی آب دانشکدة کشاورزی دانشگاه ارومیه

2 استادیار گروه مهندسی آب دانشکدة کشاورزی دانشگاه ارومیه

3 استادیار گروه مهندسی آب دانشکدة کشاورزی دانشگاه تبریز

چکیده

در این مطالعه کارایی مدل شبیه‏سازی رشد گیاه AquaCrop در پیش‏بینی عملکرد دانه، رشد مادة خشک، و پوشش گیاهی ذرت تحت مدیریت‏های مختلف عمق آبیاری و نیتروژن ارزیابی شد. آزمایش مزرعه‏ای با سه سطح نیتروژن‌ شامل 0 و 150 و 300 کیلوگرم نیتروژن بر هکتار (به ترتیب N1 و N2 و N3) و چهار عمق آبیاری شامل 60، 80، 100، و 120 درصد تخلیة رطوبت خاک (به ترتیب I1، I2، I3، و I4) با سه تکرار طی دو سال و به صورت طرح بلوک کامل تصادفی اجرا شد. مدل AquaCrop بر اساس اطلاعات زراعی سال اول آزمایش واسنجی و سال دوم اعتبارسنجی شد. به طور کلی، مدل AquaCrop دقت بالایی در شبیه‏سازی رشد ذرت داشت. اما در سطح آبیاری I1 در تخمین مادة خشک و سطح کودی N1 در تخمین پوشش گیاه دقت کمتری نشان داد. متوسط ریشة میانگین مربعات خطای نرمال (NRMSE) تخمین عملکرد دانه در مرحلة واسنجی و اعتبارسنجی به ترتیب 89/7 و 86/4 درصد به دست آمد. در پیش‏بینی رشد مادة خشک، در سطح نیتروژن معین، افزایش تنش آبی باعث افزایش خطای پیش‏بینی مادة خشک توسط مدل شد. در همة تیمارها مادة خشک به صورت بیش‏برآورد پیش‏بینی شد و متوسط NRMSE پیش‏بینی رشد مادة خشک در مرحلة واسنجی و اعتبارسنجی به ترتیب 7/18 و 9/20 درصد محاسبه شد. همچنین، مدل AquaCrop رشد پوشش گیاهی در سطح نیتروژن N2 را با دقت بالا پیش‏بینی کرد؛ اما در سطوح نیتروژن  N1و N3 به ترتیب خطای کم‌برآورد و بیش‌برآورد نشان داد. متوسط خطای ریشة میانگین مربعات (RMSE) تخمین پوشش گیاهی (کل تیمارها) در واسنجی و اعتبارسنجی به ترتیب 7/11 و 3/7 درصد محاسبه شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Dynamic Simulation through Aqua Crop of Maize Growth under Different Management Decisions of Water Application and Nitrogen Fertilizer Use

نویسندگان [English]

  • Milad Ebrahimi 1
  • Vahid Reza Verdinejad 2
  • Abolfazl Mjnooni - Heris 3
1 Graduate Student, Irrigation and Drainage, Department of Water Engineering, Urmia University, Urmia, Iran
2 Assistant Professor, Department of Water Engineering, Urmia University, Urmia, Iran
3 Assistant Professor, Department of Water Engineering, University of Tabriz, Tabriz, Iran
چکیده [English]

The performance of crop growth simulation model, Aqua Crop was evaluated to predict grain yield, biomass and canopy cover in maize growth under different management conditions of depth of irrigation (I) and nitrogen (N) application. A field experiment was conducted with three levels of N comprise of : 0, 150 and 300 kg N ha-1 (N1, N2 and N3) along with four depths of irrigation, corresponding with  60, 80, 100 and 120 percent of soil water depletion ( I1, I2, I3 and I4), in the framework of a randomized complete block design of three replications during 2002-2004. AquaCrop model was calibrated and then validated as based upon field data collected respectively from the first and second year of the experiment. Based upon the results obtained the AquaCrop model simulated the maize’s grain yield with a high precision under different levels of nitrogen fertilizer and irrigation depths. In total, the AquaCrop model exhibited a high precision in simulation with respect to maize growth. However, the model indicated low precision in the I1 irrigation level treatment for biomass prediction and N1 nitrogen level as regards canopy cover prediction. The average normalized Root Mean Square Error of grain yield prediction for the calibration and validation cases were calculated as 7.89 and 4.86 percent, respectively. For biomass growth in a special nitrogen fertilizer level, increasing water stress causes an increase in the biomass prediction error as reflected by the model. Biomass (in all treatments) was predicted as over-estimated with the average normalized Root Mean Square Error for calibration and validation being obtained as 18.7 and 20.9 percent, respectively. AquaCrop model predicted canopy cover growth of maize under N2 nitrogen level with a high precision; but within the N1 and N3 nitrogen levels they were under and over-estimated, respectively. The average Root Mean Square Error (RMSE) of percent canopy cover for all the treatments in calibration and validation were obtained as 11.7 and 7.33 percent, respectively.

کلیدواژه‌ها [English]

  • Canopy Cover Growth
  • Biomass Growth
  • Shiraz
  • Grain yield
  • Crop Growth Model
Allen, R. G., Preira, L. S., Raes, D., and Smith, M. (1998). Crop evapotranspiration guidelines for computing crop water requirement. FAO Irrigation and Drainage Paper, No. (56), Rome, Italy.
Dai, X., Shi, H., Li, Y., Ouyang, Z., and Huo, Z. (2009). Artificial neural network models for estimating regional reference evapotranspiration based on climate factors. Hydrological Processes, 23: 442-450.
De Juan Valero, J. A. M., Maturano, A., Artigao, J. M., Ramirez, T. M. B., and Ortega, A. J. F. (2005). Growth and nitrogen use efficiency of irrigated maize in a semiarid region as affected by nitrogen fertilization. Spanish Journal of Agricultural Research, 3(1), 134-144.
Geerts, S. and Raes, D. (2009). Deficit irrigation as on-farm strategy to maximize crop water productivity in dry areas.Agricultural Water Management, 96, 1275-1284.
Ghamari, M., Andarziyan, B., Bakhshandeh, A., Gharineh, M. H., and Fathi, Gh. (2011).Simulate theeffects ofdroughtand nitrogenon yield,waterand nitrogenuse efficiencyin maize usingCERES-Maize. Journal ofCrop Physiology,3(11), 21-31. (In Farsi)
Gheysari, M., Mirlatifi, S. M., Bannayan, M., Homaee, M., and Hoogenboom, G. (2009a). Interaction of water andnitrogen on maize grown for silage. Agricultural Water Management, 96(5), 809-821.
Gheysari, M., Mirlatifi, S. M., Bannayan, M., Homaee, M., Asadi, M. S., and Hoogenboom, G. (2009b). Nitrate leaching in a silage maize field under different irrigation and nitrogen fertilizer rates. Agricultural Water Management, 96(6), 946-954.
Gholami, A. R. and Pirmoradiyan, N. (2011). Calibration of a simple model (VSM) for yield prediction of corn under different water and nitrogen managements.Journal of Water and Soil, 25(2), 258-265. (In Farsi)
Girardin, P., Tollenaar, M., Deltour, A., and Muldoon, J. (1987). Temporary N starvation in maize (Zea mays L.): effects on development, dry matter accumulation and grain yield. American Society of Agronomy,7, 289-296.
Heng, L. K., Hsiao, T. C., Evett, S., Howell, T., and Steduto, P. (2009). Validating the FAO AquaCrop model for irrigated and water deficient field maize. American Society of Agronomy, 101, 488-498.
Hsiao, T. C., Heng, L. K., Steduto, P., Rojas-Lara, B., Raes, D., and Fereres, E. (2009). AquaCrop-the FAO crop model  to simulate yield response to water, III: Parameterization and testing for maize. Agronomy Journal, 101, 448-459.
Jones, C. A. and Kiniry, J. R. (1986). CERES-Maize: A simulation model of maize growth and development.Texas A&M University Press, College Station, Texas.
Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., Wilkens, P. W., Singh, U., Gijsman, A. J., and Ritchie, J. T. (2003). The DSSAT cropping system model.European journal of agronomy, 18, 235-265.
Khoshravesh, M., Mostafazadeh-Fard, B., Heidarpour, M., and Kiani, A. R. (2013). AquaCrop model simulation under different irrigation water and nitrogen strategies.Water Science and Technology, 67.1: 232: 238. doi: 10.2166/wst.2012.564.
Kropff, M. J., Cassman, K. G., Van Laar, H. H., and Peng, S. (1993). Nitrogen and yield potential of irrigated rice. Plant and Soil, 155/156, 391-394.
Majdam, M., Naderi, A., Nourmohammadi, GH., Siyadat, A., Aynehband, A., and mousavi, H. (2008). Effectof waterstressvaluesandmode ofdistribution ofnitrogenon yield andnitrogenoutputof maize. IranianJournalof AgriculturalSciences, 39(1), 97-106. (In Farsi)
Majidian, M., Ghalvand, A., Karimiyan, N., and Kamgar-haghighi, A. A. (2008). Effects of nitrogen different amounts, manure and irrigation water on yield and yield components of corn. ElectronicJournalof CropProduction, 1(2), 67-85. (In Farsi)
Majidian, M. and Ghadiri, H. (2002). Effect of water stress and different levels of nitrogen fertilizer during different growth stages on grain yield, yield components, water use efficiency and some physiological characteristics of Corn (Zea Mays L.).Iranian Journal of Agricultural Sciences, 33(3): 521-533. (In Farsi)
Majnooni, A., Zand-parsa, SH., Sepaskhah, A. R., Kamgar, A., and Yasrebi, J. (2011). Modificationand validation of maize simulation model (MSM) at different applied water and nitrogen levelsunder furrow irrigation.Archives of Agronomy and Soil Science, 57(4), 401-420.
 McCown, R. L., Hammer, G. L., Hargreaves, J. N. G., Holzworth, D. P., and Freebairn, D. M. (1996). APSIM: A novel software system for model development, model testing, and simulation in agricultural systems research. Agricultural Systems,50, 255-271.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., and Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE: American Society of Agricultural and Biological Engineers, 50(3): 885-900.
Nielsen, D., Juan, J., Garcia, M., and Lyon, J. (2012). Canopy cover and leaf area index relationships for Wheat, Triticale, and Corn. American Society of Agronomy J., 104, 1569-1573.
Norwood, C. A. (2000). Water use and yield of limited irrigated and dry land corn. Soil Science Society of America Journal, 64, 365-370.
Patel, J. B., Patel V. J., and Patel, J. R. (2006). Influence of different methods of irrigation and nitrogen levels on crop growth rate and yield of maize (Zea mays L.). Indian Journal of Crop Science, 1(1-2), 175-177.
Raes, D., Steduto, P., Hsiao, T. C., and Fereres, E. (2009). AquaCrop-The FAO crop model for predicting yield response to water: II. Main algorithms and software description. American Society of Agronomy, 101, 438-447.
Raes, D., Steduto, P., Hsiao, T. C., and Fereres, E. (2012). Reference manual AquaCrop, FAO, Land and Water Division, Rome, Italy.
Rabie, M., Mirlatifi, S. M., and Gheysari, M. (2012a). Calibration and evaluation of the CSM-CERES-MAIZE model for maize hybrid 704 single-cross in Varamin. Journal of Water and Soil, 26 (2): 290-299. (In Farsi)
Rabie, M., Gheysari, M., and Mirlatifi, S. M. (2012b). Evaluation of DSSAT model for nitrate leaching under different water and nitrogen rates in maize field.Journal of Science and Technology of Agriculture and Natural Resources (Water and Soil Science), 17 (63): 71-80. (In Farsi)
Rahimikhoob, H., Sotoodehnia, A., and Massahbavani, A. R. (2014). Calibration and evaluation of Aquacrop for Maize in Qazvin region.Iranian Journal of irrigation and Drainage, 8(1), 108-115. (In Farsi)
Singh A. K., Tripathy, R., and Chopra, U. K. (2008). Evaluation of CERESWheat and CropSystmodels for water-Nitrogen interactions in Wheat crop. Agricultural Water Management, 95: 776-786.
Steduto, P., Hsiao, T. C., Raes, D., and Fereres, E. (2009). AquaCrop—the FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying Principles. Journal of Agronomy, 101, 426-437.
Stockle, C. O. and Nelson, R. L. (1994). Cropsyst User’s manual (Version 1.0).Biological Systems Engineering Dept., Washington State University, Pullman, WA, USA.
Zand-Parsa, Sh., Sepaskhah, A. R., and Rownaghi, A. (2006). Development and evaluation of integrated water and nitrogen model for maize. Agricultural Water Management,81, 227-256.