بررسی انحلال فسفر توسط اکتینومایست‌ها و تاثیر دو جدایه منتخب بر شاخص‌های رشدی و تغذیه‌ای گیاه جو

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و مهندسی خاک، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران

2 سازمان کشاورزی استان گیلان، مدیریت و حفاظت گیاهان، رشت، ایران

10.22059/ijswr.2025.404231.670026

چکیده

این پژوهش با هدف بررسی توانایی سویه‌های اکتینومایست در افزایش حلالیت فسفر و بهبود ویژگی‌های خاک و رشد گیاه جو در دو بخش انجام شد. در بخش اول، آزمایشی به صورت فاکتوریل در قالب طرح کاملاً تصادفی با ۲۹ سویه اکتینومایست و سه محیط کشت GA، NBRIPو SMM در سه تکرار طراحی و توانایی سویه‌ها در انحلال فسفر و تغییر pH محیط کشت‌ها ارزیابی شد. در بخش دوم، کشت گیاه جو با چهار تیمار (شاهد (C)، کود شیمیایی (CF) و دو سویهS4A  وS4F و سه تکرار در قالب طرح بلوک کاملا تصادفی اجرا شد. پس از 40 روز از کشت گیاه جو و برداشت آن، برخی ویژگی‌های خاک و صفات رشدی و وضعیت تغذیه‌ای گیاه مورد ارزیابی قرار گرفت. در محیط GA نسبت به دو محیط کشت دیگر، بیشترین میانگینpH  (14/6) و در عین حال بیشترین انحلال فسفر (4/172 میلی‌گرم بر لیتر) مشاهده شد. بیشترین مقدار فسفر خاک (7/29 میلی‌گرم بر کیلوگرم) در تیمار S4A مشاهده شد و نیتروژن معدنی و پتاسیم قابل جذب خاک نیز در تیمارهایS4A  و S4F به طور معنی‌داری افزایش یافتند. طول ساقه، طول ریشه و وزن خشک اندام هوایی در تیمارهای CF و دو سویه اکتینومایست اختلاف معنی‌داری نشان ندادند (P>0.05).  مقدار فسفر و آهن گیاه در تیمارهای S4A و S4F اختلاف افزایشی معنی‌داری را با تیمارهای C و CF نشان دادند (p<0.01).  بنابراین استفاده از سویه‌های اکتینومایست به‌عنوان کود زیستی می‌تواند به افزایش پایداری و حاصلخیزی خاک کمک کند و توصیه می‌شود در راستای کشاورزی پایدار و حفظ محیط‌زیست، از کودهای زیستی همراه با کودهای شیمیایی استفاده شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of actinomycetes inoculation on phosphorus dissolution and the effect of two selected isolates on the growth and nutritional indices of barley plant

نویسندگان [English]

  • Sana Emady 1
  • Nasrin Ghorbanzadeh 1
  • Mohammad Bagher Farhangi 1
  • Sina Noorizadeh 2
1 Department of Soil Science, Faculty of Agriculture, University of Guilan, Rasht, 41635-1314, Iran
2 Agriculture Organization of Guilan Province, Management of Plant Protection, Rasht, Iran.
چکیده [English]

This study was conducted in two parts to investigate the ability of actinomycete strains to enhance phosphorus (P) solubility, improve soil properties, and promote barley growth. In the first part, a factorial experiment with a completely randomized design with three replications was carried out using 29 actinomycete strains and three types of culture media, GA, NBRIP, and SMM, to evaluate the effectiveness of these strains in dissolving P and altering the pH of the culture media. In the second part, barley was cultivated in a completely randomized block design under four treatments: control (C), chemical fertilizer (CF), and two actinomycete strains, S4A and S4F, with three replications. After 40 days of cultivating and harvesting barley, some soil characteristics, growth traits, and the nutritional status of the plant were evaluated. The GA medium, compared to the other two cultures, exhibited the highest average pH at 6.14, along with the highest P solubility at 172.4 mg L-1. The highest soil P was found in the S4A. Additionally, there were significant increases in mineral nitrogen and available potassium in both the S4A and S4F. Stem length, root length, and shoot dry weight did not show a significant difference in the CF with two actinomycete strains. The P and iron contents in the plants in S4A and S4F showed a significant increase compared to C and CF. Using actinomycete strains as biofertilizers can enhance soil stability and fertility. Therefore, it is recommended to apply biofertilizers in conjunction with chemical fertilizers to support sustainable agriculture and environmental protection.

کلیدواژه‌ها [English]

  • Actinomycetes
  • Biofertilizer
  • Plant growth-promoting rhizobacteria
  • Phosphate solubilizer
  • Sustainable agriculture

Background and Objectives

Phosphorus (P) is an essential nutrient for plant growth and development. A P deficiency not only reduces plant yields but also decreases the efficiency of agricultural inputs and soil fertility. Many soils in Iran have limited P availability, leading to the excessive use of chemical fertilizers. In this context, phosphorus-solubilizing microorganisms (PSMs) offer a sustainable alternative to chemical fertilizers. Actinomycetes, in particular, play a critical role in dissolving insoluble phosphorus and enhancing nutrient absorption. This is due to their unique ability to produce secondary metabolites, hydrolytic enzymes, and organic acids. This study was conducted in two sections to investigate the ability of actinomycete strains to increase phosphorus solubility, improve soil properties, and enhance barley plant growth.

Methodology

Firstly, a factorial experiment was designed using a completely randomized design that included 29 actinomycete strains and three types of culture media (GA, NBRIP, and SMM) in triplicate. The study evaluated the ability of the strains to dissolve P and alter the pH of the culture media. Based on this analysis, the two best strains, S4A and S4F, were selected. In the second stage of the experiment, a completely randomized block design was implemented, consisting of four treatments: control (C), chemical fertilizer (CF), and two strains (S4A and S4F). Each treatment was replicated three times and applied to barley plants. After 40 days of barley cultivation and harvesting, the soil's chemical and biological properties, along with the plant growth index and morphological traits, were assessed. Additionally, to evaluate the plant's nutritional status, the concentrations of nitrogen, phosphorus, potassium, and iron in the plant shoot were measured.

Results

The results demonstrated that the effects of the culture medium, actinomycete strain, and their interaction on soluble P levels and pH were significant (p ≤ 0.01). The pH values ranged from 4.44 to 5.81. Notably, the GA medium had the highest average pH at 6.14, which also corresponded to the highest P solubility at 172.4 mg L-1, significantly different from the NBRIP and SMM media. Among the actinomycete strains, the highest P solubility was found in strain S16 at 198.16 mg L-1, while the lowest was observed in strain S12A at 76.7 mg L-1. Results of plant cultivation experiments indicated a significant effect of treatments on soil pH, available P, inorganic nitrogen, and organic carbon. The highest concentration of available P in the soil (29.7 mg kg-1) was recorded in the S4A treatment. Additionally, both inorganic nitrogen and available potassium levels increased significantly in the S4A and S4F treatments. The S4F treatment also exhibited the highest soil available iron content at 3.7 mg kg-1, which was not a significant difference from that in the S4A treatment. In terms of plant growth, measurements of stem length, root length, and shoot dry weight showed no significant differences between the C and the two actinomycete strains (P > 0.05). However, the levels of P and iron in plants treated with S4A and S4F were significantly higher than those in the C and CF treatments. There were no significant differences in plant potassium levels between the two types of strains and the CF treatments.

Conclusion

The results showed that using the actinomycete strains S4A and S4F as biofertilizers has a positive and significant impact on both the chemical and biological properties of the soil, as well as on the physiological characteristics of plants. Consequently, utilizing these actinomycete strains as biofertilizers can reduce the reliance on chemical fertilizers while simultaneously enhancing soil sustainability and fertility. Therefore, it is recommended to combine biological methods with chemical fertilizers to promote sustainable agriculture and protect the environment.

Author Contributions

For this research article, the individual contributions are as follows: “Conceptualization, [Author A and C]; methodology, [Author D]; software, [Author C]; validation, [Author B]; formal analysis, [Author A]; investigation, resources, data curation, writing—original draft preparation, [Author A] writing—review and editing, visualization, supervision, project administration, funding acquisition [Author A and B]. All authors have read and agreed to the published version of the manuscript.” Please turn to the CRediT taxonomy for the term explanation. Authorship must be limited to those who have contributed substantially to the work reported. Data Availability Statement. The data that support the findings of this study are available.

Data Availability Statement

The data that support the findings of this study are available.

For further inquiries regarding the data, please contact author’s email.

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The author declares no conflict of interest.

Adesemoye AO, Torbert HA, & Kloepper JW. (2009). Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microbial Ecology, 58(4), pp. 921-929. https://doi.org/10.1007/s00248-009-9531-y.
Ahmed E, & Holmström SJ. (2014). Siderophores in environmental research: roles and applications. Microbial Biotechnology, 7(3), pp. 196-208. https://doi.org/10.1111/1751-7915.12117.
Ali A, Karim H, Julhijjah R, Wahyuni S, Anita Sari F, Rante H, Hala Y, & Jumadi O. (2023). Plant growth-promotion and fusarium biocontrol by culturable indigenous actinomycetes isolated from Indonesian Onion cultivar. Available at SSRN 4376013. https://doi.org/ 10.2139/ssrn.4376013.
Alori ET, Glick BR, & Babalola OO. (2017). Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Frontiers in microbiology, 8, p. 971. https://doi.org/10.3389/fmicb.2017.00971.
Anderson TH, & Domsch KH. (1993). The metabolic quotient for CO2 (q CO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biology and Biochemistry, 25(3), 393-395. https://doi.org/10.1016/0038-0717(93)90140-7.
Babaniyi BR, Olaide TH, Apara IB, Ajibola OK, Olaoluwa DO, & Bisi-Omotosho A. (2024). Soil microbes and climate change mitigation. In Soil Microbiome in Green Technology Sustainability, 229-254. Cham: Springer Nature Switzerland. https://doi. 10.1007/978-3-031-71844-1-9.
Bharti C, Mishra P, Verma P, Bhattacharya A, Arora P, & Arora NK. (2025). Microorganisms for Sustainable Agriculture & Food Security. In Environmental Sustainability & Biotechnology: Opportunities & Challenges (pp. 53-94). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-96-9025-1_2.
Bhattacharyya PN, & Jha DK. (2012). Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of microbiology & biotechnology, 28(4), pp.1327-1350. https://doi.org/10.1007/s11274-011-0979-9
Blagodatskaya Е, & Kuzyakov Y. (2008). Mechanisms of real & apparent priming effects & their dependence on soil microbial biomass & community structure: critical review. Biology & Fertility of Soils, 45(2), pp.115-131. https://doi.org/10.1007/s00374-008-0334-y
Bouizgarne B. (2022). Phosphate-solubilizing actinomycetes as biofertilizers & biopesticides: bioformulations for sustainable agriculture. In Microbial BioTechnology for Sustainable Agriculture, 1, p. 407-428. https://doi.org/10.1007/978-981-16-4843-4_13.
Bousselham M, Lemriss S, Dhiba D, Aallam Y, Souiri A, Abbas Y, Saïdi N, Boukcim H, & Hamdali H. (2022). Streptomycetaceae and Promicromonosporaceae: two actinomycetes families from Moroccan oat soils enhancing solubilization of natural phosphate. Microorganisms, 10(6), p.1116. https://doi.org/10.3390/microorganisms10061116
Chen M, & Ma LQ. (2001). Comparison of three aqua regia digestion methods for twenty Florida soils. Soil Science Society of America Journal, 65(2), pp.491-499. https://doi.org/10.2136/sssaj2001.652491x.
Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, & Young CC. (2006). Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied soil ecology, 34(1), pp.33-41. https://doi.org/10.1016/j.apsoil.2005.12.002.
Chen Q, Song Y, An Y, Lu Y, & Zhong G. (2024). Mechanisms and impact of rhizosphere microbial metabolites on crop health, traits, functional components: a comprehensive review. Molecules, 29(24), p.5922. https://doi.org/10.3390/molecules29245922.
Chowdhuri I, and Pal SC. (2025). Challenges and potential pathways towards sustainable agriculture crop production: A systematic review to achieve sustainable development goals (SDGs). Soil & Tillage Research, 248, p.106442. https://doi.org/10.1016/j.still.2024.106442.
Colombo F, Pesenti M, Araniti F, Pilu SR, & Nocito FF. (2024). An Integrated and multi-stakeholder approach for sustainable phosphorus management in agriculture. Agronomy, 14(4), p.780. https://doi.org/10.3390/agronomy14040780.
de Lima JD, de Souza AJ, Nunes ALP, Rivadavea WR, Zaro GC, & da Silva GJ. (2024). Expanding agricultural potential through biological nitrogen fixation: Recent advances and diversity of diazotrophic bacteria. Australian Journal of Crop Science, 18(6), pp. 324-333. https://doi.org/10.21475/ajcs.24.18.06.p4104.
Elbasiouny H, Elbehiry F, El-Ramady H, & Brevik EC. (2020). Phosphorus availability and potential environmental risk assessment in alkaline soils. Agriculture, 10(5), p.172. https://doi.org/10.3390/agriculture10050172.
El-Khouly N, Fergani M, El-temsah M, El-Saady K, & Shahin M. (2024). Impact of integration between soil application of phosphorus and foliar spraying of nano potassium, iron, and boron on the productivity and quality of peanuts. Egyptian Journal of Botany, 64(3), pp.130-147. https://doi.org 10.21608/ejbo.2024.213993.2356
Estefan G, Sommer R, & Ryan J. (2013). Methods of soil, plant, and water analysis: a manual for the West Asia and North Africa region.
Fierer N, Allen AS, Schimel JP, & Holden PA. (2003). Controls on microbial CO2 production: a comparison of surface and subsurface soil horizons. Global Change Biology, 9(9), pp.1322-1332. https://doi.org/10.1046/j.1365-2486.2003.00663.x.
Franko U, & Merbach I. (2017). Modelling soil organic matter dynamics on a bare fallow Chernozem soil in Central Germany. Geoderma, 303, pp.93-98. https://doi.org/10.1016/j.geoderma.2017.05.013.
Gee GW, & Bauder JW. (1986). Particle-size analysis. In: Klute, A. (Ed.), Methods of Soil Analysis: Part 1. Agronomy Handbook, No 9, American Society of Agronomy and Soil Science Society of America, Madison, WI, pp. 383-411. https://doi.org/10.2136/sssabookser5.1.2ed.c15.
Glick BR. (2012). Plant growth‐promoting bacteria: mechanisms and applications. Scientifica, 2012(1), p.963401. https://doi.org/10.6064/2012/963401.
Gonçalves JO, Leones AR, de Farias BS, da Silva MD, Jaeschke DP, Fernandes SS, Ribeiro AC, Cadaval Jr TRS, & Pinto LADA. (2025). A Comprehensive review of agricultural residue-derived bioadsorbents for emerging contaminant removal. Water, 17(14), p.2141. https://doi.org/10.3390/w17142141.
Gupta BK. (2007). Soil, plant, water and fertilizer analysis. Agrobios (India). https://doi.org/10.1007/BF02841332.
Illmer P, & Schinner F. (1992). Solubilization of inorganic phosphates by microorganisms isolated from forest soils. Soil Biology & Biochemistry, 24, p. 389–395. https://doi.org/10.1016/0038-0717(92)90199-8.
Imran A. (2025). Carbon cultivation for sustainable agriculture, ecosystem resilience, and climate change mitigation. Communications in Soil Science & Plant Analysis, 56(9), pp.1430-1456. https://doi.org/10.1080/00103624.2025.2453996.
Itelima JU, Bang WJ, Onyimba IA, & Oj E. (2018). A review: biofertilizer, a key player in enhancing soil fertility and crop productivity. Journal of Microbiology and Biotechnolog, 2(1), pp.22-28. http://creativecommons.org/licenses/by-nc/4.0.
Jahan N, Mahmud U, & Khan MZ. (2025). Sustainable plant-soil phosphorus management in agricultural systems: challenges, environmental impacts & innovative solutions. Discover Soil, 2(1), pp.1-8. https://doi.org/10.1007/s44378-025-00039-2.
Jenkinson DS, & Ladd JN. (2021). Microbial biomass in soil: measurement and turnover. In Soil biochemistry, pp. 415-472). CRC Press. https://doi.org/10.1201/9781003064763.
Jorquera MA, Shaharoona B, Nadeem SM, de la Luz Mora M, & Crowley DE. (2012). Plant growth-promoting rhizobacteria associated with ancient clones of creosote bush (Larrea tridentata). Microbial ecology, 64(4), pp.1008-1017. https://doi.org/10.1007/s00248-012-0071-5.
Khalili N, Ghorbani Nasrabadi R, Baranimotlagh M, & Khodadadi R. (2023). The effect of humic acid and inoculation of actinomycetes isolates on phosphorus solubilization in laboratory conditions and phosphorus content in maize (Zea mays). Journal of Soil Management & Sustainable Production, 13(2), pp.75-94. https://doi.org/10.22069/ejsms.2023.21253.2096. (In Persian).
Khan MS, Zaidi A, & Wani PA. (2009). Role of phosphate solubilizing microorganisms in sustainable agriculture-a review. Sustainable agriculture, pp.551-570. https://doi.org/10.1007/978-90-481-2666-8_34.
Kumar V, Behl RK, & Narula N. (2001). Establishment of phosphate-solubilizing strains of Azotobacter chroococcum in the rhizosphere and their effect on wheat cultivars under greenhouse conditions. Microbiological research, 156(1), pp.87-93. https://doi.org/10.1078/0944-5013-00081.
Kuo SM, & Morgan DR. (1996). Active noise control systems. (Vol. 4). Wiley, New York. http://dx.doi.org/10.1109/5.763310.
Kuzyakov Y. (2010). Priming effects: interactions between living and dead organic matter. Soil Biology & Biochemistry, 42(9), pp.1363-1371. https://doi.org/10.1016/j.soilbio.2010.04.003.
Lamuka AP, Retnowati Y, Katili AS, Kandowangko NY, & Uno WD. (2025). Phosphate solubilizing actinomycetes in the rhizosphere of corn (Zea mays) in Gorontalo. MIKHAYLA: Journal of Advanced Research, 2(1), pp.1-10. https://doi.org/10.61579/mikhayla.v2i1.282.
Lindsay WL, & Norvell W. (1978). Development of a DTPA soil test for zinc, iron, manganese, ans copper. Soil Science Society of America journal, 42(3), pp.421-428. https://doi.org/10.2136/sssaj1978.03615995004200030009x.
Li L, Hu Z, Tan G, Fan J, Chen Y, Xiao Y, Wu S, Zhi Q, Liu T, Yin H, &Tang Q. (2023). Enhancing plant growth in biofertilizer-amended soil through nitrogen-transforming microbial communities. Frontiers in Plant Science, 14, p.1259853. https://doi.org/10.3389/fpls.2023.1259853.
Loeppert RH, & Suarez DL. (1996). Carbonate and gypsum. Methods of soil analysis: Part 3 chemical methods5, pp.437-474. https://doi.org/10.2136/sssabookser5.3.c15.
Martínez-Hidalgo P, & Hirsch AM. (2017). The nodule microbiome: N2-fixing rhizobia do not live alone. Phytobiomes Journal, 1(2), pp.70-82. https://doi.org/10.1094/PBIOMES-12-16-0019-RVW.
Mc Lean EO, & Watson ME. (1985). Soil measurements of plant‐available potassium. Potassium in agriculture, pp.277-308. https://doi.org/10.2134/1985.potassium.c10.
Mitra D, Mondal R, Khoshru B, Senapati A, Radha TK, Mahakur B, Uniyal N, Myo EM, Boutaj H, Sierra BEG, & Panneerselvam P. (2022). Actinobacteria-enhanced plant growth, nutrient acquisition, and crop protection: Advances in soil, plant, and microbial multifactorial interactions. Pedosphere, 32(1), pp.149-170. https://doi.org/10.1016/S1002-0160(21)60042-5.
Nautiyal CS. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS microbiology Letters, 170(1), pp.265-270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x.
Noorizadeh S, Golmaohamadi M, Farhangi MB, Banihashemian SN, Mahdavi V, Atighi MR, & Unc A. (2025). Antibacterial properties and plant growth-promoting effect of actinobacteria obtained from citrus orchards in Iran. Journal of Plant Pathology, https://doi.org/10.1007/s42161-025-02043-5.
Olsen SR. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). US Department of Agriculture.
Page AL, Miller RH, & Keeney DR. (1982). Methods of Soil Analysis. Part 2. Chemical & Microbiological Properties. American Society of Agronomy, Soil Science Society of America, 1159. https://doi.org/10.2134/agronmonogr9.2.2ed.c33.
Pahalvi HN, Rafiya L, Rashid S, Nisar B & Kamili AN. (2021). Chemical fertilizers and their impact on soil health. In Microbiota & biofertilizers, Vol 2: Ecofriendly tools for reclamation of degraded soil environs (pp. 1-20). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-61010-4_1.
Park J, Guan W, & Yu G. (2025). Smart Hydrogels for Sustainable Agriculture. EcoMat, 7(4), p.e70011. https://doi.org/10.1002/eom2.70011.
Prabhu N, Borkar S, & Garg S. (2019). Phosphate solubilization by microorganisms: overview, mechanisms, applications, and advances. Advances in Biological Science Research, pp. 161-176. https://doi.org/10.1016/B978-0-12-817497-5.00011-2.
Qin YM, Tu YH, Li T, Ni Y, Wang RF, & Wang H. (2025). Deep Learning for sustainable agriculture: A systematic review on applications in lettuce cultivation. Sustainability, 17(7), p.3190. https://doi.org/10.3390/su17073190.
Rajput MS, Naresh Kumar G, & Rajkumar S. (2013). Repression of oxalic acid-mediated mineral phosphate solubilization in rhizospheric isolates of Klebsiella pneumoniae by succinate. Archives of microbiology195(2), pp.81-88. https://doi.org/10.1007/s00203-012-0850-x.
Ramesh A, Sharma SK, Sharma MP, Yadav N, & Joshi OP. (2014). Plant growth-promoting traits in Enterobacter cloacae subsp. Dissolvent MDSR9 isolated from soybean rhizosphere and its impact on the growth and nutrition of soybean and wheat upon inoculation. Agricultural Research3(1), pp.53-66. https://doi.org/10.1007/s40003-014-0100-3.
Rawat P, Das S, Shankhdhar D, & Shankhdhar SC. (2021). Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. Journal of Soil Science & Plant Nutrition, 21(1), pp.49–68. https://doi.org/10.1007/s42729-020-00342-7.
Richardson AE, & Simpson RJ. (2011). Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant physiology, 156(3), pp.989-996. https://doi.org/10.1104/pp.111.175448.
Richardson AE, Barea JM, McNeill AM, & Prigent-Combaret C. (2009). Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil, 321(1-2), pp. 305–339. https://doi.org/10.1007/s11104-009-9895-2.
Robertson GP. (2015). A sustainable agriculture? Daedalus144(4), pp.76-89. https://doi.org/10.1162/DAED_a_00355.
Rowell DI. (1994). Soil Science: Methods and Applications. Longman Group. https://doi.org/10.4324/9781315844855.
Saharan BS, & Nehra V. (2011). Plant growth promoting rhizobacteria: a critical review. International Journal of Life Science and Medical Research, 21(1), p.30. https://doi.org/ 10.12691/wjar-10-2-2
Sáhó A, Karikás V, Ásványi B, Lakatos E, Varga L, & Greff B. (2024). Bioactive potential of actinobacteria Strains isolated from the rhizosphere of lavender, lemon balm, and oregano. Agriculture, 14(10), p.1758. https://doi.org/10.3390/agriculture14101758.
Sashidhar B, & Podile AR. (2010). Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway involving glucose dehydrogenase. Journal of applied microbiology, 109(1), pp.1-12. https://doi.org/10.1111/j.1365-2672.2009.04654.x.
Schikora A, & Schmidt W. (2001). Iron stress-induced changes in root epidermal cell fate are regulated independently from physiological responses to low iron availability. Plant Physiology, 125, pp.1679–1687. https://doi.org/10.1104/pp.125.4.1679.
Sharma SB, Sayyed RZ, Trivedi MH, & Gobi TA. (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2(1), p.587. https://doi.org/10.1186/2193-1801-2-587.
Sun A, Jiao XY, Chen Q, Wu AL, Zheng Y, Lin YX, He JZ, & Hu HW. (2021). Microbial communities in crop phyllosphere and root endosphere are more resistant than soil microbiota to fertilization. Soil Biology & Biochemistry, 153, p.108113. https://doi.org/10.1016/j.soilbio.2020.108113
Tan M, Feng T, Wang C, Hao X, & Yu H. (2025). Effects of microbial agents on soil improvement: A Review and Bibliometric Analysis. Agronomy, 15(5), p.1223. https://doi.org/10.3390/agronomy15051223.
Thepbandit W, & Athinuwat D. (2024). Rhizosphere microorganisms supply availability of soil nutrients and induce plant defense. Microorganisms, 12(3), p.558. https://doi.org/10.3390/microorganisms12030558.
Tolin S, De Franceschi G, Spolaore B, Frare E, Canton M, Polverino de Laureto P, & Fontana A. (2010). The oleic acid complexes of proteolytic fragments of α‐lactalbumin display apoptotic activity. The FEBS journal, 277(1), pp.163-173. https://doi.org/10.1111/j.1742-4658.2009.07466.x.
Walkley A, & Black IA. (1934). An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science, 37(1), pp.29-38. http://dx.doi.org/10.1097/00010694-193401000-00003.
Wang X, Liu Y, Tian X, Guo J, Luan Y, & Wang D. (2025). Root exudates mediate the production of reactive oxygen species in rhizosphere soil: Formation mechanisms and ecological effects. Plants, 14(9), p.1395. https://doi.org/10.3390/plants14091395.
Whitelaw MA. (1999). Growth promotion of plants inoculated with phosphate-solubilizing fungi. Advances in agronomy, 69, pp.99-151. https://doi.org/10.1016/S0065-2113(08)60948-7
Yu Y, Zhang M, Lin S, Wang L, Liu J, Jones G, & Huang HC. (2013). Assessment the levels of tartrate-resistant acid phosphatase (TRAP) on mice fed with eggshell calcium citrate malate. International Journal of Biological Macromolecules, 58, pp. 253-257. https://doi.org/10.1016/j.ijbiomac.2013.04.027.
Zaidi A, Khan MS, Ahemad M, Oves M, & Wani PA. (2009). Recent advances in plant growth promotion by phosphate-solubilizing microbes. Microbial strategies for crop improvement, pp.23-50. https://doi.org/10.1007/978-3-642-01979-1_2.
Zhu X, Lee SY, Yang WT, Lee SW, Baek D, Li M, & Kim DH. (2019). The Burholderia pyrrocinia purple acid phosphatase Pap9 mediates phosphate acquisition in plants. Journal of Plant Biology, 62(5), pp.342-350. https://doi.org/10.1007/s12374-019-0161-8.