ارزیابی کمی کیفیت خاک تحت سامانه‌های مدیریتی مرتع در استان زنجان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

2 گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران.

10.22059/ijswr.2025.403694.670018

چکیده

ارزیابی کمی کیفیت خاک جهت بررسی عملکرد خاک و شناسایی روش‌های مدیریتی مناسب خاک امری ضروری است. این پژوهش با هدف ارزیابی کمی کیفیت خاک در مراتع نیمه‌خشک استان زنجان تحت سه سامانه مدیریتی شامل مرتع طبیعی (بدون مدیریت)، قرق همراه با بذرپاشی و نهال‌کاری، انجام شد. ابتدا ویژگی‌های فیزیکی، شیمیایی و زیستی خاک در عمق 0–30 سانتی‌متر اندازه‌گیری و با تحلیل مؤلفه‌های اصلی حداقل مجموعه داده تعیین گردید. شاخص‌های کیفیت خاک با توابع نمره‌دهی خطی و غیرخطی و ادغام افزایشی و وزنی محاسبه گردید و برای مقایسه کارایی شاخص‌ها از تحلیل تشخیص استفاده شد. بر اساس تحلیل مؤلفه‌های اصلی پنج شناسه کلیدی شامل میانگین هندسی قطر خاک‌دانه (GMD)، رطوبت قابل‌دسترس گیاه (AW)، هدایت الکتریکی (EC)، پتاسیم قابل‌جذب (K) و جرم مخصوص ظاهری (BD) انتخاب شد. نتایج نشان داد سامانه‌های احیایی نسبت به مرتع طبیعی به‌طور معنی‌داری کیفیت خاک را بهبود داده‌اند؛ به‌ویژه در نهال‌کاری، کاهش BD و افزایشGMD، AW و K مشاهده شد، هرچند در این سامانه EC اندکی بالاتر بود. تحلیل تشخیص نشان داد شاخص ساده خطی غیر‌وزنی بیشترین توان تفکیک سامانه‌های مدیریتی را داشته و به‌عنوان شاخص برتر برای پایش میدانی پیشنهاد می‌شود. به‌طور کلی، اعمال قرق و نهال‌کاری در مراتع نیمه‌خشک با بهبود هم‌زمان ویژگی‌های ساختمانی، وضعیت رطوبتی و حاصلخیزی، موجب ارتقای معنی‌دار کیفیت خاک شده و می‌تواند راهبردی مؤثر برای احیای کارکردهای اکوسیستم مرتعی و مدیریت پایدار منابع طبیعی در استان زنجان و مناطق مشابه باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Quantitative Assessment of Soil Quality Under Rangeland Management Systems in Zanjan Province

نویسندگان [English]

  • Hossein Shamkhani 1
  • Mohammad Sadegh Askari 1
  • Ali Reza Vaezi 2
  • Parisa Alamdari 2
1 Department of Soil Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
2 Department of Soil Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
چکیده [English]

A quantitative assessment of soil quality is essential for evaluating soil functionality and determining appropriate soil management strategies.This study aimed to quantitatively assess soil quality in semi-arid rangelands of Zanjan Province under three management systems: natural rangeland (unmanaged), grazing exclosure with reseeding, and seedling planting (afforestation). Physical, chemical, and biological soil properties were measured at 0–30 cm depth, and a minimum data set (MDS) was identified using principal component analysis (PCA). Soil quality indices (SQIs) were determined using both linear and nonlinear scoring functions, which were subsequently integrated using additive and weighted methods. The efficacy of the models was evaluated using discriminant analysis. PCA identified five critical indicators for MDS, including geometric mean diameter of aggregates (GMD), plant-available water (AW), electrical conductivity (EC), available potassium (K), and bulk density (BD). The findings indicate that the implementation of restorative systems led to a significant enhancement in soil quality compared to natural rangelands. Specifically, the seedling-planting system demonstrated reduced BD and increased GMD, AW, and K, although there was a slight increase in EC in this system. Discriminant analysis indicated that the simple, unweighted linear SQI provided the greatest power to discriminate among management systems and is recommended as a superior index for field monitoring. The simultaneous application of exclosure and seedling planting in semi-arid rangelands has been demonstrated to improve soil structural properties, moisture levels and fertility. This approach significantly improves soil quality and offers an effective strategy for restoring rangeland ecosystem functions and promoting sustainable natural resource management in the Zanjan Province and similar regions.

کلیدواژه‌ها [English]

  • Multivariate analysis
  • discriminant analysis
  • soil quality indicators
  • minimum dataset

Introduction

Rangelands constitute 54% of the Earth's terrestrial surface and account for 52% of the land area of Iran. A significant portion of these Iranian rangelands is experiencing degradation owing to excessive utilization. Although vegetation recovery is evident in some regions, the responses of soils, including their structure, organic matter, nutrients, and microbial communities, remain poorly understood. Overgrazing results in decreased soil organic carbon, nitrogen, and biological activity, while simultaneously increasing soil bulk density and risk of erosion.

Objective

 The objectives were to (a) identify a minimum dataset of soil quality indicators for semi-arid rangelands, (b) compare scoring methods for indexing soil quality, and (c) evaluate the effectiveness of restoration interventions in enhancing soil physical, chemical, and biological properties.

Method

This study was conducted in the Qezeltepe region, which is characterized as a semiarid climate and receives an annual precipitation of 359.8 mm. This study assessed soil quality across three management systems in Zanjan Province, northwestern Iran: (i) natural rangeland without management, (ii) grazing exclusion with native reseeding, and (iii) seedling planting (afforestation). In the spring of 2023, 60 composite topsoil samples (0–30 cm; n = 20 per management) were collected using a random method within 40 × 40 m plots. Intact soil cores were collected for analysis, and 26 properties were quantified using established laboratory techniques. The data were assessed for normality and homoscedasticity, followed by ANOVA and LSD post-hoc tests to compare the management practices. Principal component analysis (PCA) with varimax rotation was employed to identify the minimum dataset (MDS). The MDS variables were scored using both linear and sigmoidal nonlinear functions. These scores were then aggregated in two ways: simple additive and PCA-weighted additive, yielding four soil quality indices (SQIs): linear additive, nonlinear additive, linear weighted, and nonlinear weighted. Discriminant analysis was used to determine which SQI best distinguished the management operations.

Results

Among the 26 properties analyzed, 19 showed significant variations in response to the management practices. Compared with natural rangelands, both grazing exclusion and afforestation decreased bulk density (BD) and soil compaction while simultaneously increasing the geometric mean diameter (GMD) and soil structure index. These management practices also enhanced the saturated hydraulic conductivity, total porosity, macroporosity, and aeration capacity, indicating improved infiltration. Furthermore, soil water retention was enhanced, as evidenced by increases in field capacity and available water (AW), with the latter rising from 6.5% in natural rangelands to over 8% in afforested areas. From a chemical perspective, the levels of soil organic carbon and total nitrogen were elevated under exclusion and afforestation conditions. In contrast, available potassium (K) increased specifically with afforestation, whereas available phosphorus was more prevalent in restored systems. In biological terms, both microbial biomass carbon and soil respiration increased in the restoration treatments. Notably, microbial biomass carbon exceeded 500 mg kg⁻¹ in afforestation, indicating enhanced moisture conditions. The highest levels of electrical conductivity (EC) were recorded under afforestation conditions while remaining within non-saline thresholds. However, this indicates a potential accumulation of salts. PCA explained 76% of the total variance across three components and identified a five-indicator minimum dataset: GMD, AW, EC, K, and BD. All SQIs consistently ranked the systems, indicating that restoration was superior to the natural rangeland. Discriminant analysis (Wilks' λ≈0.53; χ² significant at p<0.001) indicated that the linear, unweighted SQI demonstrated the highest-class separation coefficient. This finding suggests that a simple additive index derived from the MDS effectively captures the management effects.

Conclusion

In the semi-arid rangelands of Zanjan, five indicators (GMD, AW, EC, K, and BD) constitute a MDS that is responsive to management practices. The exclusion of grazing, combined with reseeding and afforestation, significantly improved the soil structure, water retention, fertility, and microbial activity within the upper 30 cm of the soil profile. The linear SQI derived from this MDS effectively differentiates management outcomes, making it highly suitable for monitoring by land managers. Although afforestation presents numerous benefits, the observed rise in EC necessitates the implementation of adaptive salinity management strategies. The MDS-based SQI is a practical tool for prioritizing sites, monitoring ecological recovery, and guiding policy decisions aimed at reversing rangeland degradation and enhancing ecosystem services, such as carbon storage, water regulation, and forage provision across semi-arid landscapes.

Author Contributions

Conceptualization: Shamkhani and Askari; methodology: Shamkhani; software analysis: Shamkhani and Askari; writing—original draft preparation: Shamkhani; review and editing: Askari and Alamdari; supervision: Askari and Vaezi.

 Data Availability Statement

 The data will be made available upon request.

 Ethical considerations

 The authors avoided data fabrication, falsification, plagiarism, and other forms of misconduct.

 Conflict of interest

 The authors declare no conflicts of interest.  

Alaboz, P., Odabas, M. S., & Dengiz, O. (2023). Soil quality assessment based on machine learning approach for cultivated lands in semi-humid environmental condition part of Black Sea region. Archives of Agronomy and Soil Science, 69(15), 3514–3532.
Alef, K., & Nannipieri, P. (1995). Methods in applied soil microbiology and biochemistry.
Andrews, S. S., Karlen, D. L., & Cambardella, C. A. (2004). The Soil Management Assessment Framework. Soil Science Society of America Journal, 68(6), 1945–1962. https://doi.org/https://doi.org/10.2136/sssaj2004.1945
Askari, M. S., & Holden, N. M. (2014). Indices for quantitative evaluation of soil quality under grassland management. Geoderma, 230-231, 131–142. https://doi.org/https://doi.org/10.1016/j.geoderma.2014.04.019
Askari, M. S., & Holden, N. M. (2015). Quantitative soil quality indexing of temperate arable management systems. Soil and Tillage Research, 150, 57–67.
Askari, M. S., Alamdari, P., Chahardoli, S., & Afshari, A. (2020). Quantification of heavy metal pollution for environmental assessment of soil condition. Environ Monit Assess, 192(3), 162. https://doi.org/10.1007/s10661-020-8116-6
Bastani, M., Sadeghipour, A., Kamali, N., Zarafshar, M., & Bazot, S. (2023). How does livestock graze management affect woodland soil health? Frontiers in Forests and Global Change, 6, 1028149.
Bastida, F., Luis Moreno, J., Teresa, H., & García, C. (2006). Microbiological degradation index of soils in a semiarid climate. Soil Biology and Biochemistry, 38(12), 3463–3473. https://doi.org/https://doi.org/10.1016/j.soilbio.2006.06.001
Baumgartner, S. A., Smith, S. W., Bartzke, G. S., Laizar, O., Ploechl, J. F., Michler, L. M., Naro, E. M., & Treydte, A. C. (2024). Love your wet grass! Dry season grazing reserves show highest grass regrowth in communal semi-arid rangelands of Tanzania. PLoS One, 19(11), e0313818. https://doi.org/10.1371/journal.pone.0313818
Brejda, J. J., Karlen, D. L., Smith, J. L., & Allan, D. L. (2000). Identification of regional soil quality factors and indicators II. Northern Mississippi Loess Hills and Palouse Prairie. Soil Science Society of America Journal, 64(6), 2125–2135.
Bremner, J. (1960). Determination of nitrogen in soil by the Kjeldahl method. The Journal of Agricultural Science, 55(1), 11–33.
Bronick, C. J., & Lal, R. (2005). Soil structure and management: a review. Geoderma, 124(1), 3–22. https://doi.org/https://doi.org/10.1016/j.geoderma.2004.03.005
Bünemann, E. K., Bongiorno, G., Bai, Z., Creamer, R. E., De Deyn, G., de Goede, R., Fleskens, L., Geissen, V., Kuyper, T. W., Mäder, P., Pulleman, M., Sukkel, W., van Groenigen, J. W., & Brussaard, L. (2018). Soil quality – A critical review. Soil Biology and Biochemistry, 120, 105–125. https://doi.org/https://doi.org/10.1016/j.soilbio.2018.01.030
Carter, M. R., & Gregorich, E. G. (2007). Soil sampling and methods of analysis. CRC press.
Dagar, J. C., Gupta, S. R., & Gaur, A. (2023). Tree-based farming systems for improving productivity and ecosystem services in saline environments of dry regions: An overview. Farming System, 1(1), 100003. https://doi.org/https://doi.org/10.1016/j.farsys.2023.100003
Dexter, A., Czyż, E., Richard, G., & Reszkowska, A. (2008). A user-friendly water retention function that takes account of the textural and structural pore spaces in soil. Geoderma, 143(3-4), 243–253.
DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry, 28(3), 350–356.
El Bourhrami, B., Ibno Namr, K., Et-Tayeb, H., & Duraisamy, V. (2022). Application of Soil Quality Index to Assess the Status of Soils Submitted to Intensive Agriculture in the Irrigated Plain of Doukkala, Moroccan Semiarid Region. Ecological Engineering & Environmental Technology, 23.
Eldridge, D. J., Delgado-Baquerizo, M., Travers, S. K., Val, J., & Oliver, I. (2017). Do grazing intensity and herbivore type affect soil health? Insights from a semi-arid productivity gradient. Journal of Applied Ecology, 54(3), 976–985. https://doi.org/https://doi.org/10.1111/1365-2664.12834
Erfanzadeh, R., Sabetpour, T., Amini, T., & Török, P. (2025). Soil seed bank resilience after rangeland conversion: implications for restoring abandoned agricultural lands. Sci Total Environ, 997, 180209. https://doi.org/10.1016/j.scitotenv.2025.180209
Gardner, W. H. (1986). Water content. Methods of soil analysis: Part 1 physical and mineralogical methods, 5, 493–544.
Girija Veni, V., Srinivasarao, C., Sammi Reddy, K., Sharma, K. L., & Rai, A. (2020). Chapter 26 - Soil health and climate change. In M. N. V. Prasad & M. Pietrzykowski (Eds.), Climate Change and Soil Interactions (pp. 751–767). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-818032-7.00026-6
Grossman, R., & Reinsch, T. (2002). 2.1 Bulk density and linear extensibility. Methods of soil analysis: Part 4 physical methods, 5, 201–228.
Gu, F., Zhou, M., Zhu, B., & Wang, H. (2025). Converting Cropland to Forest Improves Soil Water Retention Capacity by Changing Soil Aggregate Stability and Pore-Size Distribution. Sustainability, 17(10), 4363.
Hamidi Nehrani, S., Askari, M. S., Saadat, S., Delavar, M. A., & Taheri, M. (2020). Using multivariate analysis to evaluate soil quality in agricultural lands of Zanjan province. Applied Soil Research, 8(2), 158–173.
Hamidi Nehrani, S., Askari, M. S., Saadat, S., Delavar, M. A., Taheri, M., & Holden, N. M. (2020). Quantification of soil quality under semi-arid agriculture in the northwest of Iran. Ecological Indicators, 108, 105770. https://doi.org/https://doi.org/10.1016/j.ecolind.2019.105770
Herrera Calvo, P. M. (2024). Global Land Outlook: Thematic Report on Rangelands and Pastoralists.
Hesse, P. R., & Hesse, P. (1971). A textbook of soil chemical analysis.
Islam, W., Zeng, F., Siddiqui, J. A., Zhihao, Z., Du, Y., Zhang, Y., Alshaharni, M. O., & Khan, K. A. (2025). Combating desertification: comprehensive strategies, challenges, and future directions for sustainable solutions. Biological Reviews.
Joner, E., & Leyval, C. (1997). Uptake of 109Cd by roots and hyphae of a Glomus mosseae/Trifolium subterraneum mycorrhiza from soil amended with high and low concentrations of cadmium. The New Phytologist, 135(2), 353–360.
Jones, J. (2018). Soil analysis handbook of reference methods. CRC press.
Karray, E., & Bouricha, B. (2025). Discriminant analysis using feature extraction from spectral domain responses to achieve accurate delineation for robust evaluation or classification of soil properties. International Journal of Remote Sensing, 46(1), 410–428.
Kemper, W. D., & Rosenau, R. C. (1986). Aggregate stability and size distribution. Methods of soil analysis: part 1 physical and mineralogical methods, 5, 425–442.
Lehmann, J., Bossio, D. A., Kögel-Knabner, I., & Rillig, M. C. (2020). The concept and future prospects of soil health. Nature Reviews Earth & Environment, 1(10), 544–553. https://doi.org/10.1038/s43017-020-0080-8
Liu, X., Sheng, H., Wang, Z., Ma, Z., Huang, X., & Li, L. (2020). Does Grazing Exclusion Improve Soil Carbon and Nitrogen Stocks in Alpine Grasslands on the Qinghai-Tibetan Plateau? A Meta-Analysis. Sustainability, 12(3), 977.
Macheroum, A., Sayada, N., & Chenchouni, H. (2025). Restoration of soil quality and improvement of physicochemical properties through grazing exclusion in arid and semi-arid rangelands. CATENA, 249, 108646. https://doi.org/https://doi.org/10.1016/j.catena.2024.108646
Maleki, S., Zeraatpisheh, M., Karimi, A., Sareban, G., & Wang, L. (2022). Assessing Variation of Soil Quality in Agroecosystem in an Arid Environment Using Digital Soil Mapping. Agronomy, 12(3), 578. https://doi.org/10.3390/agronomy12030578.
Mao, L., Miao, Y., Ge, Y., Wei, S., Yang, X., Li, S., Si, L., Gou, Y. P., & Quandahor, P. (2024). Effects of different afforestation years on soil moisture and nutrient content in Maxian Mountain of the Loess Plateau. Sci Rep, 14(1), 16194. https://doi.org/10.1038/s41598-024-66408-z
Masoumi Tabar Zanjani, A. H., Askari, M. s., Amanifar, S., & Hassani, A. (2025). Evaluating the Impact of Converting Rangeland to Cropland on Soil Physical Quality in a Semi-Arid Region. Journal of Soil Management and Sustainable Production, 15(1), 1–27. https://doi.org/10.22069/ejsms.2025.22503.2155
Masto, R. E., Chhonkar, P. K., Singh, D., & Patra, A. K. (2008). Alternative soil quality indices for evaluating the effect of intensive cropping, fertilisation and manuring for 31 years in the semi-arid soils of India. Environmental Monitoring and Assessment, 136(1), 419–435.
Mongil-Manso, J., Navarro-Hevia, J., & San Martín, R. (2022). Impact of Land Use Change and Afforestation on Soil Properties in a Mediterranean Mountain Area of Central Spain. Land, 11(7), 1043.
Morris, M. L., Eastburn, D. J., Roche, L. M., Davy, J., Doran, M., Karle, B., Lile, D., Schohr, T., Snell, L., Macon, D., Woodmansee, G., Touceda-Suárez, M., & Barberán, A. (2025). Effects of grazing exclusion and pasture management on soil microbial communities in Californian irrigated pastures. Applied Soil Ecology, 215, 106419. https://doi.org/https://doi.org/10.1016/j.apsoil.2025.106419
Nabiollahi, K., Golmohamadi, F., Taghizadeh-Mehrjardi, R., Kerry, R., & Davari, M. (2018). Assessing the effects of slope gradient and land use change on soil quality degradation through digital mapping of soil quality indices and soil loss rate. Geoderma, 318, 16–28.
Nath, A. J., & Rattan, L. (2017). Effects of tillage practices and land use management on soil aggregates and soil organic carbon in the north Appalachian region, USA. Pedosphere, 27(1), 172–176.
Nelson, D. W., & Sommers, L. E. (1982). Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 2 chemical and microbiological properties, 9, 539–579.
Pan, Z., Cai, X., Bo, Y., Guan, C., Cai, L., Haider, F. U., Li, X., & Yu, H. (2024). Response of soil organic carbon and soil aggregate stability to changes in land use patterns on the Loess Plateau. Scientific Reports, 14(1), 31775. https://doi.org/10.1038/s41598-024-82300-2
Parvizi, Y., & Fatehi, S. (2024). Modeling and digital mapping of soil quality indicators in different land uses (a case study: Ravansar-Sanjabi Plain, Kermanshah). Environ Monit Assess, 196(2), 184. https://doi.org/10.1007/s10661-024-12349-z
Philip, J. R. (1957). The theory of infiltration: 4. Sorptivity and algebraic infiltration equations. Soil science, 84(3), 257–264.
Pieri, C. J. (2012). Fertility of soils: a future for farming in the West African Savannah (Vol. 10). Springer Science & Business Media.
Pierzynski, G. M. (2000). Methods of phosphorus analysis for soils, sediments, residuals, and waters. In: North Carolina State University Raleigh, NC.
Raiesi, F. (2017). A minimum data set and soil quality index to quantify the effect of land use conversion on soil quality and degradation in native rangelands of upland arid and semiarid regions. Ecological Indicators, 75, 307–320. https://doi.org/https://doi.org/10.1016/j.ecolind.2016.12.049
Reichert, J. M., Suzuki, L. E. A. S., Reinert, D. J., Horn, R., & Håkansson, I. (2009). Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils. Soil and Tillage Research, 102(2), 242–254.
Reynolds, W., Bowman, B., Drury, C., Tan, C., & Lu, X. (2002). Indicators of good soil physical quality: density and storage parameters. Geoderma, 110(1-2), 131–146.
Reynolds, W., Drury, C., Tan, C., Fox, C., & Yang, X. (2009). Use of indicators and pore volume-function characteristics to quantify soil physical quality. Geoderma, 152(3-4), 252–263.
Reynolds, W., Drury, C., Yang, X., & Tan, C. (2008). Optimal soil physical quality inferred through structural regression and parameter interactions. Geoderma, 146(3-4), 466–474.
Rhoades, J. (1982). Cation exchange capacity. Methods of soil analysis: Part 2 chemical and microbiological properties, 9, 149–157.
Sadiq, F. K., Maniyunda, L. M., Adegoke, K. A., & Anumah, A. O. (2021). Evaluating quality of soils formed on basement complex rocks in Kaduna State, northern Guinea savanna of Nigeria. Environ Monit Assess, 193(7), 383. https://doi.org/10.1007/s10661-021-09157-0
Sáez, J. I., Dec, D., Dorner, J., Ordoñez, I., Clunes, J., Radic, S., Jug, D., Jovic, J., & Jug, I. (2025). Soil physical responses to grazing and vegetation heterogeneity in the Patagonian steppe: assessing degradation and resilience at multiple spatial scales. Authorea Preprints.
Savari, M. (2023). Explaining the ranchers’ behavior of rangeland conservation in western Iran. Frontiers in Psychology, 13, 1090723.
Shamkhani, H., Askari, M. S., Vaezi, A. R., & Alamdari, P. (2025). Assessment of Soil Physical Quality in Different Management Systems of Rangelands in Zanjan Province. Iranian Journal of Soil and Water Research, 56(7), 1715–1735. https://doi.org/10.22059/ijswr.2025.393617.669924.
Sharaftmandrad, M., & Shahraki, M. (2025). Understanding rangeland desertification through pastoralist perspectives using a grounded theory approach. Scientific Reports, 15(1), 2279. https://doi.org/10.1038/s41598-025-86573-z
Sheidai Karkaj, E., Sepehry, A., Barani, H., Motamedi, J., & Shahbazi, F. (2019). Establishing a Suitable Soil Quality Index for Semi-arid Rangeland Ecosystems in Northwest of Iran. Journal of Soil Science and Plant Nutrition, 19(3), 648–658. https://doi.org/10.1007/s42729-019-00065-4
Sheidai Karkaj, E., Sepehry, A., Barani, H., Motamedi, J., & Shahbazi, F. (2019). Establishing a Suitable Soil Quality Index for Semi-arid Rangeland Ecosystems in Northwest of Iran. Journal of Soil Science and Plant Nutrition, 19(3), 648–658. https://doi.org/10.1007/s42729-019-00065-4.
Sinha, S., Masto, R. E., Ram, L. C., Selvi, V. A., Srivastava, N. K., Tripathi, R. C., & George, J. (2009). Rhizosphere soil microbial index of tree species in a coal mining ecosystem. Soil Biology and Biochemistry, 41(9), 1824–1832. https://doi.org/https://doi.org/10.1016/j.soilbio.2008.11.022
Skhosana, F. V., Thenga, H. F., Mateyisi, M. J., von Maltitz, G., Midgley, G. F., & Stevens, N. (2023). Steal the rain: Interception loses and rainfall partitioning by a broad‐leaf and a fine‐leaf woody encroaching species in a southern African semi‐arid savanna. Ecology and Evolution, 13(3), e9868.
Sun, F., Zhang, Z., Jiang, P., Zhou, S., & Ou, J. (2023). Structure and stability characteristics of zonal soil aggregates in the Three Rivers Source of the Qinghai-Tibetan Plateau. Soil Science Society of America Journal, 87(5), 1042–1055. https://doi.org/https://doi.org/10.1002/saj2.20581
Sylvia, D. M., & Williams, S. E. (1992). Vesicular‐arbuscular mycorrhizae and environmental stress. Mycorrhizae in sustainable agriculture, 54, 101–124.
Van Genuchten, M. T. (1980). A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils. Soil science society of America journal, 44(5), 892–898.
Vasu, D., Singh, S. K., Ray, S. K., Duraisami, V. P., Tiwary, P., Chandran, P., Nimkar, A. M., & Anantwar, S. G. (2016). Soil quality index (SQI) as a tool to evaluate crop productivity in semi-arid Deccan plateau, India. Geoderma, 282, 70–79.
Veihmeyer, F., & Hendrickson, A. (1931). The moisture equivalent as a measure of the field capacity of soils. Soil Science, 32(3), 181–194.
Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science, 37(1), 29–38.
Wang, L., Guo, J., Liu, X., Li, K., Ma, L., Tian, Y., Wang, J., Zhang, Q., Tian, Y., Li, C., & Lu, M. (2023). Assessment of soil quality in an arid and barren mountainous of Shandong province, China. Scientific Reports, 13(1), 19966. https://doi.org/10.1038/s41598-023-46136-6
Wang, L., Guo, J., Liu, X., Li, K., Ma, L., Tian, Y., Wang, J., Zhang, Q., Tian, Y., Li, C., & Lu, M. (2023). Assessment of soil quality in an arid and barren mountainous of Shandong province, China. Sci Rep, 13(1), 19966. https://doi.org/10.1038/s41598-023-46136-6
Wienhold, B., Karlen, D., Andrews, S., & Stott, D. (2009). Protocol for Soil Management Assessment Framework (SMAF) soil indicator scoring curve development. Renew Agric Food Syst, 24, 260–266.
Williams, S. E. (2024). A Review and Analysis of Rangeland and Wildland Soil Health. Sustainability, 16(7), 2867.
Xu, Y., Hou, Q., Xiang, J., Gao, M., Shao, P., Chen, S., Fu, Z., Long, P., & Huang, C. (2025). Evaluation of soil quality and system sustainability in ratoon rice paddy field under green manure application in central China. Field Crops Research, 333, 110087.
Yao, W., Nan, F., Li, Y., Li, Y., Liang, P., & Zhao, C. (2023). Effects of different afforestation years on soil properties and quality. Forests, 14(2), 329.
Yu, L., Chen, Y., Sun, W., & Huang, Y. (2019). Effects of grazing exclusion on soil carbon dynamics in alpine grasslands of the Tibetan Plateau. Geoderma, 353, 133–143. https://doi.org/https://doi.org/10.1016/j.geoderma.2019.06.036
Yuan, C., Yue, K., Peng, C., Wu, F., Wu, Q., Zhu, G., Wang, Y., & Peng, Y. (2025). Former ecosystem type and soil organic matter regulate the effects of reforestation on soil bulk density, porosity, electrical conductivity, and texture. Journal of Forest Research, 1–10.