جذب وآبشویی فسفات در خاک لومی شنی اصلاح ‌شده با بیوچار: شواهد حاصل از آزمایش‌های دسته‌ای و ستونی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه کردستان، سنندج، ایران

10.22059/ijswr.2025.400939.669998

چکیده

یکی از رویکردهای نوین برای بهبود ویژگی‌های خاک، استفاده از بیوچار است. با این حال، مطالعات پیشین نتایج متفاوت و گاه متناقضی درخصوص تأثیر آن بر رفتار فسفر در خاک گزارش کرده‌اند. با توجه به اهمیت فراهمی فسفر در تغذیۀ گیاهی درک دقیق‌تر از جذب و رهاسازی فسفر در حضور بیوچار ضروری به نظر می‌رسد. لذا هدف از انجام این پژوهش بررسی رفتار جذب و رهاسازی فسفات در خاک لومی شنی اصلاح‌شده با انواع مختلف بیوچار بود. بدین منظور، دو آزمایش در شرایط آزمایشگاهی انجام شد: یکی آزمایش‌های دسته‌‌ای برای ارزیابی رفتار بیوچارها در جذب فسفات و دیگری آزمایش‌های ستون‌های خاک برای بررسی تأثیر این بیوچارها بر حرکت و آبشویی فسفات در خاک. بیوچارها از دو منبع رایج زیست‌توده در منطقه، شامل کاه گندم زمستانه (Triticum aestivum) (WS) و شاخه‌های هرس‌شده درخت سیب (Malus domestica) (AW) هر کدام در دو دمای ۳۰۰ و ۵۵۰ درجۀ سانتیگراد تولید شدند. بر مبنای نتایج آزمایش‌های دسته‌ای، با افزایش دمای پیرولیز از 300 به 550 درجه سانتیگراد، میزان جذب فسفات کاهش یافت؛ بطوریکه در بیوچار AW از 98/1 به 58/0 و در بیوچار WS از 57/5 به 12/1- (رهاسازی) درصد تغییر یافت. نتایج آزمایش‌های دسته‌ای با یافته‌های ستون خاک همخوانی داشت؛ به‌طوری‌که بیوچارهایی که ظرفیت جذب فسفات بالاتری در آزمایش‌های دسته‌ای داشتند، در ستون خاک نیز آبشویی فسفات کمتری را نشان دادند. نتایج این تحقیق نشان داد که نوع مادۀ گیاهی مورد استفاده در تهیۀ بیوچار و دمای پیرولیز از عوامل کلیدی در تعیین توانایی بیوچار در جذب یا رهاسازی فسفات در خاک هستند. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Phosphate sorption and leaching in a sandy loam soil amended with biochars: Evidence from batch and column experiments

نویسندگان [English]

  • Asoo Miraky
  • Mohammad Ali Mahmoodi
  • Masoud Davari
Department of soil science, Collage of Agriculture, University of Kurdistan, Sanandaj, Iran
چکیده [English]

One of the modern approaches to improving soil properties is the use of biochar. However, previous studies have reported inconsistent findings regarding its influence on phosphorus (P) dynamics in soils. Given the critical role of P availability in plant nutrition, a deeper understanding of the phosphate sorption and release in the presence of biochar is essential. This study aimed to investigate the sorption and release behavior of phosphate in a sandy loam soil amended with different types of biochar. Two laboratory experiments were conducted: the batch sorption tests to evaluate the phosphate adsorption capacity of biochars, and the soil column experiments to assess their effects on phosphate movement and leaching. Biochars were produced from two regionally common biomass feedstocks, winter wheat straw (Triticum aestivum) (WS) and pruned apple tree branches (Malus domestica) (AW), each pyrolyzed at two temperatures (300 °C and 550 °C). Batch sorption tests revealed that raising pyrolysis temperature from 300 °C to 550 °C reduced phosphate sorption capacity (from 1.98% to 0.58% for AW biochar and from 5.57% to –1.12% for WS biochar), with wheat straw biochar produced at 550 °C even exhibiting phosphate release. The findings of the batch experiments were consistent with those from the soil column experiments, in which biochars with higher phosphate sorption capacity in batch tests also exhibited lower phosphate leaching in the soil columns. The findings of this study highlight that both the biomass feedstock type and the pyrolysis temperature are key factors in determining the biochar’s ability to sorb or release phosphate in soil.

کلیدواژه‌ها [English]

  • Biochar
  • Leaching
  • Phosphate
  • Sorption

Introduction

One of the modern approaches to improving soil properties is the use of biochar. However, previous studies have reported inconsistent findings regarding its influence on phosphorus (P) dynamics in soils. Given the critical role of P availability in plant nutrition, a deeper understanding of the phosphate sorption and release in the presence of biochar is essential. This study aimed to investigate the sorption and release behavior of phosphate in a sandy loam soil amended with different types of biochar.

Material and Methods

Biochars were produced from two regionally common biomass feedstocks, winter wheat straw (Triticum aestivum) (WS) and pruned apple tree branches (Malus domestica) (AW), pyrolyzed at two temperatures (300 °C and 550 °C). The residues were first air-dried at ambient temperature and then ground. Pyrolysis was conducted in a laboratory electric furnace at temperatures of 300 °C and 550 °C for 15 minutes under limited oxygen availability, with a heating rate of approximately 10 °C per minute. The resulting biochars were crushed and passed through a 2 mm sieve.

Two laboratory experiments were conducted: the batch sorption tests to evaluate the phosphate adsorption capacity of biochars, and the soil column experiments to assess their effects on phosphate movement and leaching. In the batch experiments, 1 g of each biochar was mixed with 50 mL of a phosphate solution at a concentration of 30.8 mg L⁻¹ in 68 mL containers. Control treatments included containers without biochar containing only the phosphate solution. The mixtures were shaken at 55 rpm for 24 hours, after which the remaining phosphate in the solution was measured using a spectrophotometer.

In the soil column experiments, four columns were filled with sandy loam soil amended with 2% (w/w) of each biochar, and a fifth column containing only soil served as the control. The columns were first saturated with deionized water for 24 hours, followed by sequential leaching with 15 pore volumes of deionized water, 15 pore volumes of phosphate solution, and finally 10 pore volumes of deionized water. Leachate samples were collected from the column outlets, filtered through 22 µm filter paper, and analyzed for phosphate concentration.

Results and Discussion:

Increasing the pyrolysis temperature led to a reduction in biochar yield for both biomass types (from 1.98% to 0.58% for AW biochar and from 5.57% to –1.12% for WS biochar), as higher temperatures drive off a greater proportion of volatile compounds from the feedstock, leaving less solid residue. Furthermore, apple wood produced a higher biochar yield than wheat straw, attributable to its more stable lignin-rich structure. The pyrolysis temperature also had a pronounced effect on the pH of both biochar types, with higher temperatures resulting in increased pH values. This can be explained by the degradation of acidic functional groups such as –COOH and –OH, along with the enrichment of alkaline compounds, including carbonates, oxides, and metal hydroxides, in the biochar.

Batch experiment results revealed that increasing the pyrolysis temperature from 300 to 550 °C reduced phosphate sorption capacity. Notably, biochar derived from wheat straw at 550 °C exhibited net phosphate release rather than sorption. Column experiments showed that phosphate sorption was lower in three treatments—apple wood biochar produced at 300 °C and 550 °C, and wheat straw biochar produced at 550 °C—compared with the control column, indicating phosphate desorption or release by the biochars. In contrast, the column containing wheat straw biochar produced at 300 °C demonstrated higher phosphate sorption relative to the control.

The decline in phosphate sorption capacity at higher pyrolysis temperatures can be attributed to the destruction of surface functional groups (–COOH and –OH) that play a key role in forming surface complexes with phosphate ions at lower temperatures. Additionally, the release of organic phosphorus compounds from the biochar matrix at elevated temperatures may increase soluble phosphorus in the aqueous phase. The batch experiment findings were consistent with the soil column results, which indicated that biochars showing greater phosphate sorption capacity in the batch tests also exhibiting reduced phosphate leaching in the column studies.

Conclusion:

This study investigated the effects of different biochars on phosphate sorption and release in soil. The results demonstrated that both the feedstock type and the pyrolysis temperature are critical factors determining the ability of biochar to sorb or release phosphate in soil. These findings highlight the importance of selecting appropriate feedstock materials and production conditions for biochar intended for agricultural and environmental applications.

Author Contributions

Conceptualization, M.A.M. and M.D.; methodology, M.A.M., A.M. and M.D.; software, M.A.M. and A.M.; validation, M.A.M., A.M., and M.D.; formal analysis, M.A.M., A.M., and M.D.; investigation, M.A.M. and M.D.; resources, M.A.M. and A.M.; data curation, A.M.; writing—original draft preparation, M.A.M.; writing—review and editing, M.A.M.; visualization, M.A.M. and A.M.; supervision, M.A.M. and M.D.; project administration, M.A.M. and A.M.; funding acquisition, M.A.M. and A.M., All authors have read and agreed to the published version of the manuscript.

Data Availability Statement

Data are available on request from the authors.

Acknowledgements

The authors would like to express their sincere appreciation to the University of Kurdistan, Sanandaj, Iran, for providing laboratory facilities and supporting the implementation of this study.

Ethical Considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of Interest

The author declares no conflict of interest.  

Altıkat, A., Alma, M. H., Altıkat, A., Bilgili, M. E., & Altıkat, S. (2024). A comprehensive study of biochar yield and quality concerning pyrolysis conditions: A multifaceted approach. Sustainability, 16(2), 937.
Borchard, N., Siemens, J., Ladd, B., Möller, A., & Amelung, W. (2014). Application of biochars to sandy and silty soil failed to increase maize yield under common agricultural practice. Soil and Tillage Research, 144, 184–194.
Cantrell, K. B., Hunt, P. G., Uchimiya, M., Novak, J. M., & Ro, K. S. (2012). Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour Technol, 107, 419–428. https://doi.org/10.1016/j.biortech.2011.11.084
Chaves Fernandes, B. C., Ferreira Mendes, K., Dias Junior, A. F., da Silva Caldeira, V. P., da Silva Teofilo, T. M., Severo Silva, T., Mendonca, V., de Freitas Souza, M., & Valadao Silva, D. (2020). Impact of Pyrolysis Temperature on the Properties of Eucalyptus Wood-Derived Biochar. Materials (Basel), 13(24). https://doi.org/10.3390/ma13245841
Chen, B., Chen, Z., & Lv, S. (2011). A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresour Technol, 102(2), 716–723. https://doi.org/10.1016/j.biortech.2010.08.067
Gee, G. W., & Bauder, J. W. (1986). Particle‐size analysis. Methods of soil analysis: Part 1 physical and mineralogical methods, 5, 383–411.
Gondek, K., Baran, A., Gondek, K., Kopeć, M., & Głąb, T. (2016). Effect of processing temperature applied to mixtures of sewage sludge and plant waste on the content of macro- and microelements in the product and on the luminescence of Vibrio fischeri. Journal of Elementology, 21(4/2016), 1289–1303. https://doi.org/10.5601/jelem.2015.20.4.1008
Gunal, E. (2025). Biochar-mediated changes in nutrient distribution and leaching patterns: insights from a soil column study. PeerJ, 13, e18823.
Gupta, R. K., Vashisht, M., Naresh, R., Dhingra, N., Sidhu, M. S., Singh, P., Rani, N., Al-Ansari, N., Alataway, A., & Dewidar, A. Z. (2024). Biochar influences nitrogen and phosphorus dynamics in two texturally different soils. Scientific Reports, 14(1), 6533.
He, W., Zhang, J., Gao, W., Chen, Y., & Wei, Z. (2025). Enhancing phosphorus availability and dynamics in acidic soils through Rice straw biochar application: a sustainable alternative to chemical fertilizers. Frontiers in Sustainable Food Systems, 9, 1506609.
Inyang, M., Gao, B., Pullammanappallil, P., Ding, W., & Zimmerman, A. R. (2010). Biochar from anaerobically digested sugarcane bagasse. Bioresour Technol, 101(22), 8868–8872. https://doi.org/10.1016/j.biortech.2010.06.088
Keiluweit, M., Nico, P. S., Johnson, M. G., & Kleber, M. (2010). Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol, 44(4), 1247–1253. https://doi.org/10.1021/es9031419
Klute, A., & Dirksen, C. (1986). Hydraulic conductivity and diffusivity: Laboratory methods. Methods of soil analysis: Part 1 physical and mineralogical methods, 5, 687–734.
Laird, D., Fleming, P., Wang, B., Horton, R., & Karlen, D. (2010). Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma, 158(3-4), 436–442. https://doi.org/10.1016/j.geoderma.2010.05.012
Lehmann, J., & Joseph, S. (2012). Biochar for Environmental Management: Science and Technology. Taylor & Francis.
Lehmann, J., & Joseph, S. (2024). Biochar for environmental management: science, technology and implementation. Taylor & Francis.
Lehmann, J., Pereira da Silva, J., Steiner, C., Nehls, T., Zech, W., & Glaser, B. (2003). Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant and Soil, 249(2), 343–357. https://doi.org/10.1023/a:1022833116184
Mahmoodi, M. A., Shorafa, M., & Savaghebi, G. (2010). Simulation of Cadmium Transport in Soil Using Convection-Dispersion Equation. Iranian Journal of Soil and Water Research, 39(1), 129–137.
Major, J., Rondon, M., Molina, D., Riha, S. J., & Lehmann, J. (2010). Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and Soil, 333(1-2), 117–128. https://doi.org/10.1007/s11104-010-0327-0
Malhotra, H., Vandana, Sharma, S., & Pandey, R. (2018). Phosphorus nutrition: plant growth in response to deficiency and excess. In Plant nutrients and abiotic stress tolerance (pp. 171–190). Springer.
Manya, J. J. (2012). Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environ Sci Technol, 46(15), 7939–7954. https://doi.org/10.1021/es301029g
MathWorks Inc. (2019). MATLAB. In (Version R2019a) [Professional License]. https://www.mathworks.com/
Novak, J. M., Lima, I., Xing, B., Gaskin, J. W., Steiner, C., Das, K., Ahmedna, M., Rehrah, D., Watts, D. W., & Busscher, W. J. (2009). Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Annals of environmental science.
Selim, H. M., Amacher, M. C., & Iskandar, I. K. (1989). Modeling the Transport of Chromium (VI) in Soil Columns. Soil Science Society of America Journal, 53(4), 996–1004. https://doi.org/10.2136/sssaj1989.03615995005300040002x
Shen, J., Yuan, L., Zhang, J., Li, H., Bai, Z., Chen, X., Zhang, W., & Zhang, F. (2011). Phosphorus dynamics: from soil to plant. Plant physiology, 156(3), 997–1005.
Soil Survey Staff. (2014). Keys to Soil Taxonomy (12 ed.). USDA, Natural Resources Conservation Service.
Song, W., & Guo, M. (2012). Quality variations of poultry litter biochar generated at different pyrolysis temperatures. Journal of analytical and applied pyrolysis, 94, 138–145.
Van Zwieten, L., Kimber, S., Morris, S., Chan, K. Y., Downie, A., Rust, J., Joseph, S., & Cowie, A. (2009). Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil, 327(1-2), 235–246. https://doi.org/10.1007/s11104-009-0050-x
Wu, Y., Zou, Z., Huang, C., & Jin, J. (2022). Effect of biochar addition on phosphorus adsorption characteristics of red soil. Frontiers in Environmental Science, 10, 893212.
Xu, X., Cao, X., & Zhao, L. (2013). Comparison of rice husk-and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: role of mineral components in biochars. Chemosphere, 92(8), 955–961.
Yadav, S. P. S., Bhandari, S., Bhatta, D., Poudel, A., Bhattarai, S., Yadav, P., Ghimire, N., Paudel, P., Paudel, P., & Shrestha, J. (2023). Biochar application: A sustainable approach to improve soil health. Journal of Agriculture and Food Research, 11, 100498.
Yao, Y., Gao, B., Zhang, M., Inyang, M., & Zimmerman, A. R. (2012). Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere, 89(11), 1467–1471. https://doi.org/10.1016/j.chemosphere.2012.06.002
Yuan, J. H., Xu, R. K., & Zhang, H. (2011). The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour Technol, 102(3), 3488–3497. https://doi.org/10.1016/j.biortech.2010.11.018
Zhao, L., Cao, X., Masek, O., & Zimmerman, A. (2013). Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J Hazard Mater, 256-257, 1–9. https://doi.org/10.1016/j.jhazmat.2013.04.015