برآورد میزان آبشویی نیترات با استفاده از مدل SSM در کشت‌بوم‌های گندم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 1. دانشجوی دکتری زراعت، گروه زراعت، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

2 استاد گروه علوم باغبانی، گروه باغبانی، دانشکده تولید کیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

3 استاد گروه زراعت، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

4 استاد گروه زراعت، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

5 استاد گروه اگروتکنولوژی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، ایران

10.22059/ijswr.2025.402220.670005

چکیده

مدل‌های شبیه‌سازی ابزاری مناسب برای شبیه‌سازی آبشویی نیترات و مؤثرترین راه برای رسیدن به کاهش آبشویی نیتروژن از مزارع به منابع آب به شمار می روند. در این مطالعه، جهت برآورد میزان آبشویی نیترات در مزارع گندم، 59 مزرعه به صورت تصادفی و با پراکنش یکنواخت در اراضی گندم شهرستان بندرترکمن در سال زراعی 99-1398 انتخاب شدند. داده‌های هواشناسی از ایستگاه هم‌دیدی بندرترکمن (دمای کمینه، بیشینه و ساعت آفتابی)، اطلاعات مدیریتی مزارع گندم (دفعات، مقدار و زمان مصرف کود نیتروژن و آبیاری، تراکم گیاهی و تاریخ کاشت) از طریق تکمیل پرسش‌نامه توسط کشاورزان و داده‌های مربوط به خاک (بافت، عمق، میزان نیترات و آمونیوم، شوری و اسیدیته) از طریق اندازه‌گیری‌های آزمایشگاهی در دانشگاه علوم کشاورزی و منابع طبیعی گرگان گردآوری شدند. سپس این اطلاعات در مدل SSM-Wheat وارد و از نتایج خروجی گرفته شد. مطابق نتایج، سه مزرعه در بخش میانی شهرستان، بیش‌تر از 30 کیلوگرم در هکتار آبشویی نیترات داشتند که به کشت آبی اختصاص دارند. همچنین 18/10 درصد (6 مزرعه) در بخش جنوبی، آبشویی 20 تا 30 کیلوگرمی در هکتار را نشان دادند.کاربرد کود مصرفی در مرحله پیش کاشت، استفاده از مقادیر بالای نیتروژن در مرحله سرک و وقوع بارندگی‌های سنگین بلافاصله پس از مصرف کود را می‌توان از دلایل آبشویی بالاتر نیترات در این کشت‌بوم‌ها عنوان کرد. همچنین مدل مورد بررسی، 2/32 درصد از مزارع را فاقد آبشویی نیترات  و 17/10 درصد را دارای کم‌ترین میزان آبشویی نیترات (1-5 کیلوگرم در هکتار) معرفی کرده که به‌عنوان مزارعی سالم از لحاظ آلودگی محیط زیستی آب‌های زیرزمینی شناخته شدند. مصرف پایین کود نیتروژن، تقسیط کود در چند مرحله رشدی و زمان‌بندی مناسب مصرف کود می‌تواند از دلایل کاهش میزان آبشویی نیترات باشد. نتایج این تحقیق می‌تواند راهنمایی برای بهینه‌سازی مصرف کود، کاهش آلودگی نیتراتی آب‌های زیرزمینی و ارتقای پایداری تولید گندم در شمال کشور مورد استفاده قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimating nitrate leaching rate using SSM model in wheat agroecosystems

نویسندگان [English]

  • Maral Niazmoradi 1
  • Hossein Kazemi 2
  • J. Gherekhloo 3
  • A. Soltani 4
  • b. Kamkar 5
1 1. PhD of Agronomy, Department of Agronomy, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
2 Department of Horticulture Science, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
3 Department of Agronomy, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
4 Department of Agronomy, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
5 Department of Agrotechnology, ّFaculty of Agriculture, Ferdowsi University of Mashhad, Iran.
چکیده [English]

Simulation models are effective tools for estimating nitrogen leaching and reducing its loss from agricultural fields. In this study, the SSM-Wheat model was applied to estimate nitrate leaching in wheat fields of Bandar-e-Turkmen County during 2019–2020. A total of 59 fields were randomly selected across the region using a uniform sampling approach. Meteorological data from the Bandar-e-Turkman synoptic station (minimum and maximum temperatures and daily sunshine hours), field management information (nitrogen fertilizer timing and amount, irrigation frequency, plant density, and planting date), and soil characteristics (texture, depth, nitrate and ammonium levels, salinity, and pH) were collected through farmer questionnaires and laboratory analyses at Gorgan University of Agricultural Sciences and Natural Resources. These data were then used as inputs for the SSM-Wheat model. Results indicated that three irrigated fields in the central part of the county experienced nitrate leaching exceeding 30 kg/ha. Additionally, 10.18% of the fields (six fields) in the southern region exhibited leaching levels of 20–30 kg/ha. High nitrogen application before planting, large fertilizer doses during tillering, and heavy rainfall following fertilizer application contributed to elevated leaching levels. The model also showed that 32.2% of the fields had no nitrate leaching, and 10.17% demonstrated minimal leaching (1–5 kg/ha), categorizing them as environmentally healthy regarding groundwater contamination. Lower fertilizer use, split nitrogen applications, and appropriate timing were key factors in reducing nitrate leaching. Overall, the findings offer practical guidance for optimizing nitrogen fertilizer management, mitigating groundwater nitrate pollution, and improving the sustainability of wheat production systems in northern Iran.

کلیدواژه‌ها [English]

  • Fertilizer management
  • Nitrogen
  • Simulation SSM-wheat model

Introduction

 Nitrogen (N) plays an important role in crop plants. It is involved in various critical processes, such as growth, leaf area expansion, and biomass-yield production (Anas et al., 2020). Excessive use of nitrogen fertilizers disrupts the balance of the global nitrogen cycle and has led to major environmental, health and economic problems. On a global scale, nearly 50 percent of agricultural nitrogen fertilizers cannot be effectively absorbed and used by plants and are lost to the environment as nitrate (NO3-), ammonia (NH3), and nitrous oxide (N2O). This increases the costs of agricultural production and leads to water pollution and climate change (Ding et al., 2020). Finding a balance between agricultural production and environmental protection is a prerequisite for the sustainable development of ground and surface waters and soil quality (Spijker et al., 2021). Therefore, considering the necessity of providing the nitrogen required by the plant to maintain yield and also to reduce nitrate pollution in groundwater due to inappropriate use of nitrogen fertilizers, the design and parameters of fertilization management should be optimized for different soil types and crops (Azad et al., 2020). Simulation models constitute efficient tools not only for predicting and managing nitrate-N pollution of surface and ground waters but also for understanding the physical, chemical, and biological processes defining nitrate-N transport from the soil–plant system to water bodies (Singh & Craswell, 2021).

In this study, the nitrate leaching index, as a factor threatening the health of agroecosystems, was investigated using the SSM-Wheat model to calculate and estimate the environmental impact of nitrogen fertilizers used in wheat fields in Bandar-e-Turkmen County.

Materials and methods

This study was conducted in Bandar-e-Turkmen county, one of the northern cities of Golestan province, Iran. This county has an area of 854.18 km2 and is located in the geographical coordinates between 53˚ 54ʹ and 54˚ 28ʹ E longitudes and 36˚ 49ʹ and 37˚ 24ʹ N latitudes. This county is 20 meters below the level of the Caspian Sea, and the slope decreases towards the sea. Bandar-e-Turkmen has a semi-humid climate, but it is located in the semi-desert climate zone from the northeast. The annual rainfall of this county is less than 420 mm. The total rainfall of the region in this crop year is about 325.2 mm and the average temperature of the coldest and hottest months of the year is 4˚C in February 2019 and 30.50˚C in June 2020, respectively. The crops of this county include wheat, barley, canola, and cotton, which are cultivated in both irrigated and rainfed system.

This study was conducted to evaluate the health of wheat agroecosystems in 59 wheat fields in the agricultural lands of Bandar-e-Turkmen County during 2019-2020. The soil samples were taken based on the W-shaped pattern and from a depth of 60 cm using an auger. samples are placed in the shade so that the moisture of the samples is completely lost and dried. They were pounded and passed through a 2 mm sieve kept at room temperature and air-dried until the tests were performed.

In this study, the SSM-Wheat model was used to simulate nitrate leaching in wheat fields. To implement this model, field management information (crop density, variety, number of seed used, planting depth, amount and frequency of fertilization and irrigation), soil characteristics (soil texture, soil bulk density, usable water, soil depth, amount of nitrate, ammonia, and total nitrogen) and weather conditions (daily data of minimum and maximum temperatures, solar radiation and rainfall) are required. These data were collected through questionnaires, laboratory experiments, and the meteorological station of the county.

Results

The results of the SSM-Wheat model showed that three fields in the central part of the county had more than 30 kg/ha of nitrate leaching, which are dedicated to irrigated farming. Also, 10.18 percent (6 fields) in the southern part of the region showed leaching of 20 to 30 kg/ha. The use of total amount of fertilizer used in the pre-planting stage, the use of high amounts of nitrogen in the tilling stage, and the occurrence of heavy rains immediately after the use of fertilizer can be the reasons for the higher leaching of nitrates in these fields. Also, the model under study identified 32.2% of the fields as having no nitrate leaching and 10.17% as having the lowest nitrate leaching rate (1-5 kg/ha), which were recognized as healthy fields in terms of groundwater environmental pollution. Low consumption of nitrogen fertilizer, distribution of fertilizer in several growth stages of wheat, and proper timing of fertilizer consumption can be the reasons for reducing nitrate leaching in these fields. Kostensalo et al (2024), in a site-specific prediction model for nitrogen leaching in conventional and organic farming, utilized up to 16 years of field measurements from two leaching fields in Finland. They developed prediction equations for nitrogen leaching for two soil types: sandy and clay soil classes. Results showed that organic farming, with a crop rotation resembling that of conventional farming, resulted on average in 20 percent less nitrogen leached per hectare as compared to conventional farming. Developed models are suitable for integration into a life cycle assessment framework, and especially the models utilizing nitrate nitrogen were shown to be applicable to a wide range of different crop types, making the model well-suited for plots with diverse crop rotations.

Conclusions

Due to the low livelihood situation of dryland farmers in the region and the high purchase price of chemical fertilizers, nitrogen fertilizer is used one or two times, and the amounts are 50-100 kg/ha, at the right time. This increases efficiency and reduces waste and leaching of nitrate from fields.

Author Contributions

The author was responsible for developing the main ideas of the paper and preparing both the initial manuscript and the revised versions.

Data Availability Statement

The datasets used in this study can be obtained from the author upon reasonable request.

Acknowledgements

We express our sincere appreciation for the financial support provided by the Gorgan University of Agricultural Sciences and Natural Resources.

Ethical considerations

The author adhered to ethical research standards and refrained from any form of data manipulation, plagiarism, or academic misconduct.

Conflict of Interest

The author certifies that there are no conflicts of interest associated with this work.

Abidi, A., Solatani, A., & Zeinali, E. (2024). Identifying plant traits to increase wheat yield under irrigated conditions. Heliyon. 10, e31734. http://doi.org/10.1016/j.heliyon.2024.e31734.
Ahmadi Alipour, H., Soltani, A., Kazemi, H., & Nehbandani, A. (2018). Zoning Golestan Province in terms of the ability and the wheat production gap using a simulation model (SSM). Crops Improvement, 20 (1), 144-129. (In Persian).
Alimagham, S.M., Soltani, A., Vadez, V., Zeinali, E., & Zand, E. (2020). Irrigated wheat (Triticum aestivum L.) traits effects on potential yield under current and future climates in Iran. Journal of Agroecology, 12(3), 413-431. (In Persian)
Alizadeh, P., & A. Soltani. (2017). Simulation of soil nitrogen balance in wheat (Triticum aestivum L.) production in Gorgan, Iran. Iranian Journal of Crop Sciences, 18(3), 218 -231. (In Persian).
Anas, M., Liao, F., Verma, K. K., Sarwar, M. A., & Mahmood, A. (2020). Fate of nitrogen in agriculture and environment: Agronomic, eco physiological and molecular approaches to improve nitrogen use efficiency. Biological Research, 53(1), 47. https://doi.org/10.1186/s40659-020-00312-4
Azad, N., Behmanesh, J., Rezaverdinejad, V., Abbasi, F., & Navabian, M. (2020). An analysis of optimal fertigation implications in diferent soils on reducing environmental impacts of agricultural nitrate leaching. Scientific Reports, 10:7797. https://doi.org/10.1038/s41598-020-64856-x.
Bremmer, J.M., & Mulvancey, C.S. (1982). Total nitrogen. In: Page AL, Miller RH and Keeney DR, (eds.). Method of Soil Analysis. Part II. Aragon Monogr, 9, Soil Science Society of America and American Society of Agronomy, Madison, WI, USA. 599-622.
Cruz, M.A.S., de Azevedo Gonçalves, A., de Arag ão, R., de Amorim, J.R.A., da Mota, P.V.M., Srinivasan, V.S., Garcia, C.A.B., & de Figueiredo, E.E. (2019). Spatial and seasonal variability of the water quality characteristics of a river in Northeast Brazil. Environmental Earth Sciences. 78, 68.
Cui, M., Zang, L., Qin, W., & Feng, J. (2020). Measures for reducing nitrate leaching in orchards: A review. Environmental pollution, 263, 114553.
Danielescu, S., T. B. MacQuarrie, K., Nyiraneza, J., Zebarth, B., SharifiMood, N., Grimmett, M., Main, T., & Levesque, M. (2024). Development and validation of a crop and nitrate leaching model for potato cropping systems in a temperate–humid region. Water, 16, 475. https://doi.org/10.3390/w16030475.
Delgado, J.A. (2002). Quantifying the loss mechanisms of nitrogen. Journal of Soil and Water Conservation, 57, 389-398.
Delgado, J.A., Shaffer, M., Hu, C., Lavado, R., Cueto-Wong, J., Joosse, P., Sotomayor, D., Colon, W., Follett, R., DelGrosso, S., Li, X., & RimskiKorsakov, H. (2008). An index approach to assess nitrogen losses to the Environment. Ecological Engineering, 32, 108-120.
De Oliveira, L.M., Maillard, P., & de Andrade Pinto, E.J. (2017). Application of a land cover pollution index to model non-point pollution sources in a Brazilian watershed. Catena. 150, 124–132.
De Mello, K., Valente, R.A., Randhir, T.O., dos Santos, A.C.A., & Vettorazzi, C.A. (2018). Effects of land use and land cover on water quality of low-order streams in Southeastern Brazil: Watershed versus riparian zone. Catena, 167, 130–138.
Ding, Y., Huang, X., & Li, Y. (2020). Nitrate leaching losses mitigated with intercropping of deep-rooted and shallow-rooted plants. Journal Soil Sediments, 21, 364–375.
Fang, Q., Ma, L., Yu, Q., Hu, C., Li, X., Malone, R., & Ahuja, L. (2013). Quantifying climate and management effects on regional crop yield and nitrogen leaching in the North China Plain. Journal of Environmental Quality, 42, 1466-1479.
FAO. (2020). FAOStat Database Collections. Available online: http://www.fao.org/faostat/en/#country.
FAOSTATS. (2022). FAOSTAT Statistics Database. Available online: https://www.fao.org/faostat (accessed on 2 August 2022).
Ferreira, P., van Soesbergen, A., Mulligan, M., Freitas, M., & Vale, M.M. (2019). Can forests buffer negative impacts of land-use and climate changes on water ecosystem services? The case of a Brazilian megalopolis. Science of the Total Environment, 685, 248–258.
Gritsch, C., Egger, F., Zehetner, F., & Zechmeister‐Boltenstern, S. (2016). The effect of temperature and moisture on trace gas emissions from deciduous and coniferous leaf litter. Journal of Geophysical Research: Biogeosciences, 121(5), 1339-1351.
Happe, K., Hutchings, N.J., Dalgaard, T., & Kellerman, K. (2011). Modelling the interactions between regional farming structure, nitrogen losses and environmental regulation. Agricultural Systems, 104, 281 -291.
Hegazy, D., Abotalib, A.Z., El-Bastaweesy, M., El-Said, M.A., Melegy, A., & Garamoon, H. (2020). Geo-environmental impacts of hydrogeological setting and anthropogenic activities on water quality in the Quaternary aquifer southeast of the Nile Delta, Egypt. Journal of African Earth Sciences, 172, 103947.
Hina, N.S. (2024). Global Meta-Analysis of Nitrate Leaching Vulnerability in Synthetic and Organic Fertilizers over the Past Four Decades. Water, 16, 457. https://doi.org/10.3390/w16030457.
Jobb ágy, E.G. (2011). Servicios Hídricos de los Ecosistemas y su Relaci ón con el uso de la Tierra en la Llanura Chaco-Pampeana; Instituto Nacional de Tecnolog ía Agropecuaria: Buenos Aires, Argentina. pp. 163–185.
Kelman, J. 2015. Water supply to the two largest Brazilian metropolitan regions. Aquat. Procedia. 5, 13–21.
Klute, A., & Dinauer, R. C. (1986). Physical and mineralogical methods. Planning, 8, 79.
Koh, D. C., Chae, G.-T., Yoon, Y.-Y., Kang, B.-R., Koh, G.-W., & Park, K.-H. (2009). Baseline geochemical characteristics of groundwater in the mountainous area of Jeju Island, South Korea: implications for degree of mineralization and nitrate contamination. Journal of Hydrology, 376, 81–93.
Koh, D.-C., Ko, K.-S., Kim, Y., Lee, S.-G., & Chang, H.W. (2007). Effect of agricultural land use on the chemistry of groundwater from basaltic aquifers, Jeju Island, South Korea. Hydrogeology Journal, 15, 727–743.
Ladha, J.K. Pathak, T.J. Six, J., & Kessel, C.V. (2005). Efficiency of fertilizer nitrogen in cereal production: retrospects and prospect. Advanced in Agronomy, 87, 85-156.
Liu, G.D., Wu, W.L., & Zhang, J. (2005). Regional differentiation of non-point source pollution ofagriculture-derived nitrate nitrogen in groundwater in northern China. Agricultural, Ecosystems & Environment, 107, 211–220.
Martínez-Dalmau, J., Berbel, J., & Ordóñez-Fernández, R. (2021). Nitrogen fertilization. A review of the risks associated with the inefficiency of its use and policy responses. Sustainability, 13, 5625. https://doi.org/10.3390/su13105625.
Min, J.H., Yun, S.T., Kim, K., Kim, H.S., Hahn, J., & Lee, S.M. (2002). Nitrate contamination of alluvial groundwaters in the Nakdong River basin, Korea. Geosciences Journal, 6, 35–46.
Moeinirad, A., Zeinali, E., Soltani1, A., Galeshi1, S., & Yeganehpoor, F. (2017). Investigation of SSM-Wheat Model to Forecast of Growth and Yield of Wheat in Response to Fertilizer Nitrogen in order to Decrease Pollution Environmental and Diseases. International Journal of Advanced Biological and Biomedical Research, 5 (2), 73–78.
Niazmoradi, M., Kazemi, H., Gherekhloo, J., Soltani, A., & Kamkar, B. 2025. Health assessment of wheat agroecosystems in Iran. Scientific Reports. 15: 18133. https://doi.org/10.1038/s41598-025-03443-4.
Noshadi, M., & Mehrabi, F. (2014). Measuring and simulation of nitrate leachate using LEACHN model. Journal of Water and Soil, 28 (2), 439-430. (In Persian).
Panahi, M. H., Soltani, A., Zeinali, E., Kalateh Arabi, M., & Nehbandani, A.R. (2020). Estimation of phenological parameters in SSM -Wheat model for bread wheat (Triticum aestivum L.) genotypes in Golestan province of Iran. Iranian Journal of Crop Sciences, 21(4), 302 -314. (In Persian).
Paneerselvam, B., Ravichandran, N., Li, P., Thomas, M., Charoenlerkthawin, W., & Bidorn, B. (2023). Machine learning approach to evaluate the groundwater quality and human health risk for sustainable drinking and irrigation purposes in South India. Chemosphere, 336: 139228. DOI: 10.1016/j.chemosphere.2023.139228.
Singh, B., & Craswell, E. (2021). Fertilizers and nitrate pollution of surface and ground water: an increasingly pervasive global problem. SN Applied Sciences, 3(4), 518. DOI:10.1007/s42452-021-04521-8
Solgi, E., & Jalili, M.R. (2021). Zoning and human health risk assessment of arsenic and nitrate contamination in groundwater of agricultural areas of the twenty-two village with geostatistics (Case study: Chahardoli Plain of Qorveh, Kurdistan Province, Iran). Agricultural Water Management, 255, 107023. DOI: 10.1016/j.agwat.2021.107023.
Soltani A., & Sinclair, T.R. (2012). Modeling physiology of crop development, growth and yield. Cabi.
Soltani, A., Maddah, V., & Sinclair, T.R. (2013a). SSM-Wheat: a simulation model for wheat development, growth and yield. International Journal of Plant Production, 7 (4), 740-711.
Soltani, E., Soltani, A., Zeinali, E., & Dastmalchi, A. (2013b). Simulation of nitrogen losses under wheat production in Gorgan, using CropSyst model. Journal of Water and Soil Conservation, 20(4),163-145. (In Persian)
Soltani, A., Bazregar, A.B., Koochaki, A.R., Zeinali, E., Ghaemi, A.R., & Hajarpoor, A. (2015). Simulation of nitrogen losses in sugar beet production in various production systems in Khorasan. Journal of Soil Management and Sustainable Production, 4 (4), 169-149. (In Persian)
Spijker, J., Fraters, D., & Vrijhoef, A. (2021). A machine learning based modelling framework to predict nitrate leaching from agricultural soils across the Netherlands. Environmental Research Communication, 3, 045002. https://doi.org/10.1088/2515-7620/abf15f.
Stewart, L.K., Charlesworth, P.B., Bristow, K.L., & Thorburn, P.J. (2006). Estimating deep drainage and nitrate leaching from the root zone under sugarcane using APSIM-SWIM. Agriculture Water Management, 81, 315-334.
Taniwaki, R.H., Cassiano, C.C.; Filoso, S., de Barros Ferraz, S.F., de Camargo, P.B., & Martinelli, L.A. (2017). Impacts of converting low-intensity pastureland to high-intensity bioenergy cropland on the water quality of tropical streams in Brazil. Science of the Total Environment, 584, 339–347.
Usher, B. (2006). Issues of groundwater pollution in Africa. In Groundwater Pollution in Africa; Taylor & Francis/Balkema: Leiden, the Netherlands.  pp. 3–9.
Zeinali, E., Soltani, A., Galeshi, S., & Movahedi Naeeni, S.A.R. (2009). Estimates of nitrate leaching from wheat fields in Gorgan, Northeast of Iran. Research Journal of Environmental Sciences, 3, 645-655.
Zhang, Q., Qian, H., Xu, P., Li, W., Feng, W., & Liu, R. (2021). Effect of hydrogeological conditions on groundwater nitrate pollution and human health risk assessment of nitrate in Jiaokou Irrigation District. Journal of Cleaner Production, 298, 126783. DOI: 10.1016/j.jclepro.2021.126783.